scholarly journals Does no-till agriculture limit crop yields?

2017 ◽  
Author(s):  
Matteo Tanadini ◽  
Zia Mehrabi

No-till is an agricultural practice widely promoted by governments, development agencies, and agricultural organisations worldwide. However, the costs and benefits to farmers adopting no-till are hotly debated 1–4. Using a meta-analysis of unprecedented study size, Pittelkow et al.5 reported that adopting no-till results in average yield losses of -5.7%, but that these losses can be limited with the added implementation of two additional conservation agriculture practices - crop rotation and crop residue retention, and in dry environments. They claimed that, as a result, resource limited smallholder farmers, that are unable to implement the whole suite of conservation agriculture practices are likely to experience yield losses under no-till. In a re-evaluation of their analysis, we found that they overly biased their results toward showing that no-till negatively impacts yields, and overlooked the practical significance of their findings. Strikingly, we find that all of the variables they used in their analysis (e.g. crop residue management, rotation, site aridity and study duration) are not much better than random for explaining the effect of no-till on crop yields. Our results suggest that their meta-analysis cannot be used as the basis for evidence-based decision-making in the agricultural community.

Soil Research ◽  
2016 ◽  
Vol 54 (6) ◽  
pp. 719 ◽  
Author(s):  
Jeremiah M. Okeyo ◽  
Jay Norton ◽  
Saidou Koala ◽  
Boaz Waswa ◽  
Job Kihara ◽  
...  

Sustainable farming practices are required to address the persistent problems of land degradation and declining crop productivity in Sub-Saharan Africa. Approaches such as reducing tillage and retaining crop residues as mulch are potential entry points for smallholder farmers to move towards sustainability. In this study, we assessed the impact of reduced tillage (RT) compared with conventional tillage (CT), each combined with crop residue reapplication, on soil quality indicators and crop yields under an 8-year trial in western Kenya. Our results indicate that RT combined with crop residue reapplication enhanced soil physical quality through increased macroaggregate (>2000µm) proportions and mean weight diameter. Similarly, lower respiratory quotient values indicate that soil microbes under RT have better substrate-use efficiency than those under CT. Nevertheless, soil organic carbon (C), potentially mineralisable C, microbial biomass C and mineral nitrogen contents were all higher under CT with crop residue incorporated into the soil. Maize grain yield and aboveground biomass were also higher under CT. Thus, despite RT showing potential to improve soil physical properties, CT performed better. A stepwise approach is proposed towards the practice of conservation agriculture under resource-constrained smallholder farming conditions, starting with increased biomass production to provide crop residue for soil cover, followed by RT approaches.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 295 ◽  
Author(s):  
Julián Cuevas ◽  
Ioannis N. Daliakopoulos ◽  
Fernando del Moral ◽  
Juan J. Hueso ◽  
Ioannis K. Tsanis

A major challenge of the Sustainable Development Goals linked to Agriculture, Food Security, and Nutrition, under the current global crop production paradigm, is that increasing crop yields often have negative environmental impacts. It is therefore urgent to develop and adopt optimal soil-improving cropping systems (SICS) that can allow us to decouple these system parameters. Soil salinization is a major environmental hazard that limits agricultural potential and is closely linked to agricultural mismanagement and water resources overexploitation, especially in arid climates. Here we review literature seeking to ameliorate the negative effect of soil salinization on crop productivity and conduct a global meta-analysis of 128 paired soil quality and yield observations from 30 studies. In this regard, we compared the effectivity of different SICS that aim to cope with soil salinization across 11 countries, in order to reveal those that are the most promising. The analysis shows that besides case-specific optimization of irrigation and drainage management, combinations of soil amendments, conditioners, and residue management can contribute to significant reductions of soil salinity while significantly increasing crop yields. These results highlight that conservation agriculture can also achieve the higher yields required for upscaling and sustaining crop production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Su ◽  
Benoit Gabrielle ◽  
Damien Beillouin ◽  
David Makowski

AbstractConservation agriculture (CA) has been promoted to mitigate climate change, reduce soil erosion, and provide a variety of ecosystem services. Yet, its impacts on crop yields remains controversial. To gain further insight, we mapped the probability of yield gain when switching from conventional tillage systems (CT) to CA worldwide. Relative yield changes were estimated with machine learning algorithms trained by 4403 paired yield observations on 8 crop species extracted from 413 publications. CA has better productive performance than no-till system (NT), and it stands a more than 50% chance to outperform CT in dryer regions of the world, especially with proper agricultural management practices. Residue retention has the largest positive impact on CA productivity comparing to other management practices. The variations in the productivity of CA and NT across geographical and climatical regions were illustrated on global maps. CA appears as a sustainable agricultural practice if targeted at specific climatic regions and crop species.


2019 ◽  
Vol 40 (03) ◽  
Author(s):  
Maninder Singh ◽  
Anita Jaswal ◽  
Arshdeep Singh

Crop residue management (CRM) through conservation agriculture can improve soil productivity and crop production by preserving soil organic matter (SOM) levels. Two major benefits of surface-residue management are improved organic matter (OM) near the soil surface and boosted nutrient cycling and preservation. Larger microbial biomass and activity near the soil surface act as a pool for nutrients desirable in crop production and enhance structural stability for increased infiltration. In addition to the altered nutrient distribution within the soil profile, changes also occur in the chemical and physical properties of the soil. Improved soil C sequestration through enhanced CRM is a cost-effective option for reducing agriculture's impact on the environment. Ideally, CRM practices should be selected to optimize crop yields with negligible adverse effects on the environment. Crop residues of common agricultural crops are chief resources, not only as sources of nutrients for subsequent crops but also for amended soil, water and air quality. Maintaining and managing crop residues in agriculture can be economically beneficial to many producers and more importantly to society. Improved residue management and reduced tillage practices should be encouraged because of their beneficial role in reducing soil degradation and increasing soil productivity. Thus, farmers have a responsibility in making management decisions that will enable them to optimize crop yields and minimize environmental impacts. Multi-disciplinary and integrated efforts by a wide variety of scientists are required to design the best site-specific systems for CRM practices to enhance agricultural productivity and sustainability while minimizing environmental impacts.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2429
Author(s):  
Xiaoru Fan ◽  
Zekai Chen ◽  
Zihan Niu ◽  
Ruiyao Zeng ◽  
Jingmin Ou ◽  
...  

Synthetic nitrogen fertilizer substitution (NSS) with different types of organic material is a cleaner agricultural practice for reducing the application of synthetic N input in farmlands while also relieving the environmental issues caused by the discharge of organic wastes. However, the effects of the NSS practice on crop yields, being the primary objective of agricultural activity, is still uncertain in China. This study conducted a meta-analysis to assess the impacts of the NSS practices with different types of organic materials on crop yields. Results showed that the average crop yield was increased by 3.4%, with significant differences under NSS, thereby demonstrating that this practice contributed to improving crop yields, especially of rice and maize. According to published reports, the NSS practices involving chicken manure, pig manure, and crop straw increased crop yields by 4.79, 7.68, and 3.28%, respectively, with significant differences, thus demonstrating the superior effects needed for replacing synthetic N fertilizer. Moreover, substitution ratios (SR) between 0% and 60% could be suggested when using the NSS practice, with the high SR recommended when the original soil fertility was adequate for crops. Considering the long-term effects of applied organic materials, improving the grain yield with the NSS practice should be expected in the long-term. By effectively applying the NSS, this study attempted to scientifically decide on the type of organic materials and the appropriate SR based on the conditions of the soil and the crop. The results provide research information for the development of clean agricultural production and food security in China.


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 930
Author(s):  
Abel Saldivia-Tejeda ◽  
Simon Fonteyne ◽  
Taiyu Guan ◽  
Nele Verhulst

In Mexico, conservation agriculture has been mainly implemented using permanent beds, where the top of the raised beds is not tilled, which allows them to obtain the benefits of conservation agriculture for yield and soil quality. However, narrow (0.75–0.80 m width) and wide (1.50–1.60 m width) beds are commonly implemented without scientific evidence available as to whether the width of the beds affects crop yields. The objective of our study was therefore to evaluate two types of permanent beds, in maize (Zea mays L.), wheat (Triticum aestivum L.), and barley (Hordeum vulgare L.) production, in various agro-ecological regions of Mexico. The study included nine sites, of which six were rainfed and three had irrigation. Bed width did not significantly affect crop yield. Therefore, farmers can choose the bed width that best meets their practical needs. Some practical considerations include mechanical weeding (more access in narrow beds), fuel use (lower for reshaping wide beds), irrigation water use (in wide beds similar to irrigating alternate furrows in narrow beds), and residue management (option to concentrate residue in windrows at center of wide beds). Soil texture can also affect this choice, because it affects water infiltration and retention.


2021 ◽  
Vol 209 ◽  
pp. 104910
Author(s):  
Guangdi D. Li ◽  
Graeme D. Schwenke ◽  
Richard C. Hayes ◽  
Adam J. Lowrie ◽  
Richard J. Lowrie ◽  
...  

Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 576
Author(s):  
Sixolise Mcinga ◽  
Lindah Muzangwa ◽  
Kudzayi Janhi ◽  
Pearson Nyari Stephano Mnkeni

Earthworms play a pivotal role in the regulation of soil health. Studies that explore the effects of conservation agriculture (CA) principles on earthworms under the semi-arid climate of the central Eastern Cape (EC) of South Africa (SA) are limited. Therefore, this study investigated the effects of tillage, crop rotations, and residue management on earthworms’ abundance and species richness. The study design followed a split-split plot with three replicates. The main plot was allocated to tillage treatment, which had conventional tillage (CT) and no-tillage (no-till) as factors. Crop rotation treatment was allocated to a subplot, and had maize (Zea mays)–fallow–maize (MFM), maize–fallow–soybean (Glycine max) (MFS), maize–wheat (Triticum aestivum)–maize (MWM), and maize–wheat–soybean (MWS). Residue management was in the sub-subplot with residue retention and residue removal. The study was carried out over four cropping seasons: summer 2015–2016, winter 2016, spring 2016, and summer 2016–2017. The results showed that the genera Amynthas and Lumbricus, both belonging to the anecic group, and Dendrobaena, belonging to the epigeic group, were present. Earthworm species diversity and density were highest under no-till than under CT. Residue retention improved earthworm density regardless of tillage management. Rotations that had fallow periods recorded lower earthworm numbers as compared to continuous cropping systems where wheat was grown in winter. The study concluded that maize–wheat–soybean (MWS) rotation with residue retention results in the highest earthworm abundance and species richness.


Sign in / Sign up

Export Citation Format

Share Document