scholarly journals The lamellipodium is a myosin independent mechanosensor

2017 ◽  
Author(s):  
Patrick W. Oakes ◽  
Tamara C. Bidone ◽  
Yvonne Beckham ◽  
Austin V. Skeeters ◽  
Guillermina R. Ramirez-San Juan ◽  
...  

AbstractThe ability of adherent cells to sense changes in the mechanical properties of their extracellular environments is critical to numerous aspects of their physiology. It has been well documented that cell attachment and spreading are sensitive to substrate stiffness. Here we demonstrate that this behavior is actually biphasic, with a transition that occurs around a Young’s modulus of ∼7 kPa. Furthermore, we demonstrate that, contrary to established assumptions, this property is independent of myosin II activity. Rather, we find that cell spreading on soft substrates is inhibited due to reduced nascent adhesion formation within the lamellipodium. Cells on soft substrates display normal leading edge protrusion activity, but these protrusions are not stabilized due to impaired adhesion assembly. Enhancing integrin-ECM affinity through addition of Mn2+ recovers nascent adhesion assembly and cell spreading on soft substrates. Using a computational model to simulate nascent adhesion assembly, we find that biophysical properties of the integrin-ECM bond are optimized to stabilize interactions above a threshold matrix stiffness that is consistent with the experimentally observations. Together these results suggest that myosin II-independent forces in the lamellipodium are responsible for mechanosensation by regulating new adhesion assembly, which in turn, directly controls cell spreading. This myosin II-independent mechanism of substrate stiffness sensing could potentially regulate a number of other stiffness sensitive processes.Significance StatementCell physiology can be regulated by the mechanics of the extracellular environment. Here, we demonstrate that cell spreading is a mechanosensitive process regulated by weak forces generated at the cell periphery and independent of motor activity. We show that stiffness sensing depends on the kinetics of the initial adhesion bonds that are subjected to forces driven by protein polymerization. This work demonstrates how the binding kinetics of adhesion molecules are sensitively tuned to a range of forces that enable mechanosensation.

2018 ◽  
Vol 115 (11) ◽  
pp. 2646-2651 ◽  
Author(s):  
Patrick W. Oakes ◽  
Tamara C. Bidone ◽  
Yvonne Beckham ◽  
Austin V. Skeeters ◽  
Guillermina R. Ramirez-San Juan ◽  
...  

The ability of adherent cells to sense changes in the mechanical properties of their extracellular environments is critical to numerous aspects of their physiology. It has been well documented that cell attachment and spreading are sensitive to substrate stiffness. Here, we demonstrate that this behavior is actually biphasic, with a transition that occurs around a Young’s modulus of ∼7 kPa. Furthermore, we demonstrate that, contrary to established assumptions, this property is independent of myosin II activity. Rather, we find that cell spreading on soft substrates is inhibited due to reduced myosin-II independent nascent adhesion formation within the lamellipodium. Cells on soft substrates display normal leading-edge protrusion activity, but these protrusions are not stabilized due to impaired adhesion assembly. Enhancing integrin–ECM affinity through addition of Mn2+ recovers nascent adhesion assembly and cell spreading on soft substrates. Using a computational model to simulate nascent adhesion assembly, we find that biophysical properties of the integrin–ECM bond are optimized to stabilize interactions above a threshold matrix stiffness that is consistent with the experimental observations. Together, these results suggest that myosin II-independent forces in the lamellipodium are responsible for mechanosensation by regulating new adhesion assembly, which, in turn, directly controls cell spreading. This myosin II-independent mechanism of substrate stiffness sensing could potentially regulate a number of other stiffness-sensitive processes.


1981 ◽  
Vol 88 (1) ◽  
pp. 138-148 ◽  
Author(s):  
W G Carter ◽  
H Rauvala ◽  
S I Hakomori

The kinetics of cell attachment and cell spreading on the coated surfaces of two classes of carbohydrate-reactive proteins, enzymes and lectins, have been compared with those on fibronectin-coated surfaces with the following results: (a) A remarkable similarity between the kinetics of cell attachment to fibronectin-coated and glycosidase-coated surfaces was found. In contrast, cell attachment kinetics induced by lectin- and galactose oxidase-coated surfaces, in general, were strikingly different from those on fibronectin and glycosidase surfaces. The distinction between fibronectin- or glycosidase- and lectin- or galactose oxidase (an enzyme with lectin-type characteristics)-coated surfaces was further supported by the finding that cytochalasin B and EDTA inhibited cell attachment to fibronectin- and glycosidase-coated surfaces but not lectin-coated surfaces. (b) Fibronectin, if labeled and added to a cell suspension, showed only low or negligible interaction with the cell surface. However, fibronectin absorbed on plastic surfaces showed a high cell-attaching activity. It is assumed that fibronectin coated on plastic surfaces may form polyvalent attachment sites in contrast to its lower valency in aqueous solution. (c) Various inhibitors of cell attachment to both fibronectin-, galactose oxidase-, and lectin-coated surfaces were effective only during the first few minutes of the adhesion assay, after which time the attached cells became insensitive to the inhibitors. It is suggested that the initial specific recognition on either lectin-type or fibronectin-type surfaces is followed by an active cell-dependent attachment process. The primary role of the adhesion surface is to stimulate the cell-dependent attachment response. (d) Cells attached on tetravalent concanavalin A (Con A) spread very rapidly and quantitatively, whereas divalent succinyl Con A and monovalent Con A were effective stimulators of cell attachment but not cell spreading. Cross-linking of succinyl Con A restored the cell spreading activity. Tetravalent Con A surfaces specifically bind soluble glycoproteins, whereas succinyl Con A has a greatly reduced ability to bind the same glycoproteins. These results suggest that cross-linking of cell surface glycoproteins by the multivalent adhesive surface may trigger the cellular reaction leading to cell spreading.


2001 ◽  
Vol 114 (11) ◽  
pp. 2155-2165
Author(s):  
Kunito Yoshida ◽  
Kei Inouye

We found that amoeboid cells of Dictyostelium are induced by a millimolar concentration of quinine to form a rapidly elongating, cylindrical protrusion, which often led to sustained locomotion of the cells. Formation of the protrusion was initiated by fusion of a contractile vacuole with the cell membrane. During protrusion extension, a patch of the contractile vacuole membrane stayed undiffused on the leading edge of the protrusion for over 30 seconds. Protrusion formation was not inhibited by high osmolarity of the external medium (at least up to 400 mosM). By contrast, mutant cells lacking myosin II (mhc− cells) failed to extend protrusions upon exposure to quinine. When GFP-myosin-expressing cells were exposed to quinine, GFP-myosin was accumulated in the cell periphery forming a layer under the cell membrane, but a newly formed protrusion was initially devoid of a GFP-myosin layer, which gradually formed and extended from the base of the protrusion. F-actin was absent in the leading front of the protrusion during the period of its rapid elongation, and the formation of a layer of F-actin in the front was closely correlated with its slowing-down or retraction. Periodical or continuous detachment of the F-actin layer from the apical membrane of the protrusion, accompanied by a transient increase in the elongation speed at the site of detachment, was observed in some of the protrusions. The detached F-actin layers, which formed a spiral layer of F-actin in the case of continuous detachment, moved in the opposite direction of protrusion elongation. In the presence of both cytochalasin A and quinine, the protrusions formed were not cylindrical but spherical, which swallowed up the entire cellular contents. The estimated bulk flux into the expanding spherical protrusions of such cells was four-times higher than the flux into the elongating cylindrical protrusions of the cells treated with quinine alone. These results indicate that the force responsible for the quinine-induced protrusion is mainly due to contraction of the cell body, which requires normal myosin II functions, while actin polymerization is important in restricting the direction of its expansion. We will discuss the possible significance of tail contraction in cell movement in the multicellular phase of Dictyostelium development, where cell locomotion similar to that induced by quinine is often observed without quinine treatment, and in protrusion elongation in general.Movies available on-line


1998 ◽  
Vol 142 (2) ◽  
pp. 573-586 ◽  
Author(s):  
Edwin A. Clark ◽  
Warren G. King ◽  
Joan S. Brugge ◽  
Marc Symons ◽  
Richard O. Hynes

The organization of the actin cytoskeleton can be regulated by soluble factors that trigger signal transduction events involving the Rho family of GTPases. Since adhesive interactions are also capable of organizing the actin-based cytoskeleton, we examined the role of Cdc42-, Rac-, and Rho-dependent signaling pathways in regulating the cytoskeleton during integrin-mediated adhesion and cell spreading using dominant-inhibitory mutants of these GTPases. When Rat1 cells initially adhere to the extracellular matrix protein fibronectin, punctate focal complexes form at the cell periphery. Concomitant with focal complex formation, we observed some phosphorylation of the focal adhesion kinase (FAK) and Src, which occurred independently of Rho family GTPases. However, subsequent phosphorylation of FAK and paxillin occurs in a Rho-dependent manner. Moreover, we found Rho dependence of the assembly of large focal adhesions from which actin stress fibers radiate. Initial adhesion to fibronectin also stimulates membrane ruffling; we show that this ruffling is independent of Rho but is dependent on both Cdc42 and Rac. Furthermore, we observed that Cdc42 controls the integrin-dependent activation of extracellular signal–regulated kinase 2 and of Akt, a kinase whose activity has been demonstrated to be dependent on phosphatidylinositol (PI) 3-kinase. Since Rac-dependent membrane ruffling can be stimulated by PI 3-kinase, it appears that Cdc42, PI 3-kinase, and Rac lie on a distinct pathway that regulates adhesion-induced membrane ruffling. In contrast to the differential regulation of integrin-mediated signaling by Cdc42, Rac, and Rho, we observed that all three GTPases regulate cell spreading, an event that may indirectly control cellular architecture. Therefore, several separable signaling pathways regulated by different members of the Rho family of GTPases converge to control adhesion-dependent changes in the organization of the cytoskeleton, changes that regulate cell morphology and behavior.


2007 ◽  
Vol 120 (21) ◽  
pp. 3792-3803 ◽  
Author(s):  
N. Takizawa ◽  
R. Ikebe ◽  
M. Ikebe ◽  
E. J. Luna

2006 ◽  
Vol 173 (4) ◽  
pp. 587-589 ◽  
Author(s):  
Anjana Nayal ◽  
Donna J. Webb ◽  
Claire M. Brown ◽  
Erik M. Schaefer ◽  
Miguel Vicente-Manzanares ◽  
...  

Continuous adhesion formation and disassembly (adhesion turnover) in the protrusions of migrating cells is regulated by unclear mechanisms. We show that p21-activated kinase (PAK)–induced phosphorylation of serine 273 in paxillin is a critical regulator of this turnover. Paxillin-S273 phosphorylation dramatically increases migration, protrusion, and adhesion turnover by increasing paxillin–GIT1 binding and promoting the localization of a GIT1–PIX–PAK signaling module near the leading edge. Mutants that interfere with the formation of this ternary module abrogate the effects of paxillin-S273 phosphorylation. PAK-dependent paxillin-S273 phosphorylation functions in a positive-feedback loop, as active PAK, active Rac, and myosin II activity are all downstream effectors of this turnover pathway. Finally, our studies led us to identify in highly motile cells a class of small adhesions that reside near the leading edge, turnover in 20–30 s, and resemble those seen with paxillin-S273 phosphorylation. These adhesions appear to be regulated by the GIT1–PIX–PAK module near the leading edge.


2007 ◽  
Vol 18 (1) ◽  
pp. 253-264 ◽  
Author(s):  
Fumin Chang ◽  
Christopher A. Lemmon ◽  
Dongeun Park ◽  
Lewis H. Romer

FAK, a cytoplasmic protein tyrosine kinase, is activated and localized to focal adhesions upon cell attachment to extracellular matrix. FAK null cells spread poorly and exhibit altered focal adhesion turnover. Rac1 is a member of the Rho-family GTPases that promotes membrane ruffling, leading edge extension, and cell spreading. We investigated the activation and subcellular location of Rac1 in FAK null and FAK reexpressing fibroblasts. FAK reexpressers had a more robust pattern of Rac1 activation after cell adhesion to fibronectin than the FAK null cells. Translocation of Rac1 to focal adhesions was observed in FAK reexpressers, but seldom in FAK null cells. Experiments with constitutively active L61Rac1 and dominant negative N17Rac1 indicated that the activation state of Rac1 regulated its localization to focal adhesions. We demonstrated that FAK tyrosine-phosphorylated βPIX and thereby increased its binding to Rac1. In addition, βPIX facilitated the targeting of activated Rac1 to focal adhesions and the efficiency of cell spreading. These data indicate that FAK has a role in the activation and focal adhesion translocation of Rac1 through the tyrosine phosphorylation of βPIX.


Author(s):  
Carol Allen

When provided with a suitable solid substrate, tissue cells undergo a rapid conversion from the spherical form expressed in suspension culture to a characteristic flattened morphology. As a result of this conversion, called cell spreading, the cell nucleus and organelles come to occupy a central region of “deep cytoplasm” which slopes steeply into a peripheral “lamellar” region less than 1 pm thick at its outer edge and generally free of cell organelles. Cell spreading is accomplished by a continuous outward repositioning of the lamellar margins. Cell translocation on the substrate results when the activity of the lamellae on one side of the cell become dominant. When this occurs, the cell is “polarized” and moves in the direction of the “leading lamellae”. Careful analysis of tissue cell locomotion by time-lapse microphotography (1) has shown that the deformational movements of the leading lamellae occur in a repeating cycle of advance and retreat in the direction of cell movement and that the rate of such deformations are positively correlated with the speed of cell movement. In the present study, the physical basis for these movements of the cell margin has been examined by comparative light microscopy of living cells with whole-mount electron microscopy of fixed cells. Ultrastructural observations were made on tissue cells grown on Formvar-coated grids, fixed with glutaraldehyde, further processed by critical-point drying, and then photographed in the High Voltage Electron Microscope. This processing and imaging system maintains the 3-dimensional organization of the whole cell, the relationship of the cell to the substrate, and affords a large sample size which facilitates quantitative analysis. Comparative analysis of film records of living cells with the whole-cell micrographs revealed that specific patterns of microfilament organization consistently accompany recognizable stages of lamellar formation and movement. The margins of spreading cells and the leading lamellae of locomoting cells showed a similar pattern of MF repositionings (Figs. 1-4). These results will be discussed in terms of a working model for the mechanics of lamellar motility which includes the following major features: (a) lamellar protrusion results when an intracellular force is exerted at a locally weak area of the cell periphery; (b) the association of cortical MFs with one another determines the local resistance to this force; (c) where MF-to-MF association is weak, the cell periphery expands and some cortical MFs are dragged passively forward; (d) contact of the expanded area with the substrate then triggers the lateral association and reorientation of these cortical MFs into MF bundles parallel to the direction of the expansion; and (e) an active interaction between these MF bundles associated with the cortex of the expanded lamellae and the cortical MFs which remained in the sub-lamellar region then pulls the latter MFs forward toward the expanded area. Thus, the advance of the cell periphery on the substrate occurs in two stages: a passive phase in which some cortical MFs are dragged outward by the force acting to expand the cell periphery, and an active phase in which additional cortical MFs are pulled forward by interaction with the first set. Subsequent interactions between peripheral microfilament bundles and filaments in the deeper cytoplasm could then transmit the advance gained by lamellar expansion to the bulk of the cytoplasm.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1004 ◽  
Author(s):  
J. Barbara Nebe ◽  
Henrike Rebl ◽  
Michael Schlosser ◽  
Susanne Staehlke ◽  
Martina Gruening ◽  
...  

Biomaterials should be bioactive in stimulating the surrounding tissue to accelerate the ingrowth of permanent implants. Chemical and topographical features of the biomaterial surface affect cell physiology at the interface. A frequently asked question is whether the chemistry or the topography dominates the cell-material interaction. Recently, we demonstrated that a plasma-chemical modification using allylamine as a precursor was able to boost not only cell attachment and cell migration, but also intracellular signaling in vital cells. This microwave plasma process generated a homogenous nanolayer with randomly distributed, positively charged amino groups. In contrast, the surface of the human osteoblast is negatively charged at −15 mV due to its hyaluronan coat. As a consequence, we assumed that positive charges at the material surface—provoking electrostatic interaction forces—are attractive for the first cell encounter. This plasma-chemical nanocoating can be used for several biomaterials in orthopedic and dental implantology like titanium, titanium alloys, calcium phosphate scaffolds, and polylactide fiber meshes produced by electrospinning. In this regard, we wanted to ascertain whether plasma polymerized allylamine (PPAAm) is also suitable for increasing the attractiveness of a ceramic surface for dental implants using Yttria-stabilized tetragonal zirconia.


Sign in / Sign up

Export Citation Format

Share Document