scholarly journals Mixed model association for biobank-scale data sets

2017 ◽  
Author(s):  
Po-Ru Loh ◽  
Gleb Kichaev ◽  
Steven Gazal ◽  
Armin P Schoech ◽  
Alkes L Price

Biobank-based genome-wide association studies are enabling exciting insights in complex trait genetics, but much uncertainty remains over best practices for optimizing statistical power and computational efficiency in GWAS while controlling confounders. Here, we introduce a much faster version of our BOLT-LMM Bayesian mixed model association method— capable of running analyses of the full UK Biobank cohort in a few days on a single compute node—and show that it produces highly powered, robust test statistics when run on all 459K European samples (retaining related individuals). When used to conduct a GWAS for height in UK Biobank, BOLT-LMM achieved power equivalent to linear regression on 650K samples—a 93% increase in effective sample size versus the common practice of analyzing unrelated British samples using linear regression (UK Biobank documentation; Bycroft et al. bioRxiv). Across a broader set of 23 highly heritable traits, the total number of independent GWAS loci detected increased from 5,839 to 10,759, an 84% increase. We recommend the use of BOLT-LMM (retaining related individuals) for biobank-scale analyses, and we have publicly released BOLT-LMM summary association statistics for the 23 traits analyzed as a resource for all researchers.

Author(s):  
Andrey Ziyatdinov ◽  
Jihye Kim ◽  
Dmitry Prokopenko ◽  
Florian Privé ◽  
Fabien Laporte ◽  
...  

Abstract The effective sample size (ESS) is a metric used to summarize in a single term the amount of correlation in a sample. It is of particular interest when predicting the statistical power of genome-wide association studies (GWAS) based on linear mixed models. Here, we introduce an analytical form of the ESS for mixed-model GWAS of quantitative traits and relate it to empirical estimators recently proposed. Using our framework, we derived approximations of the ESS for analyses of related and unrelated samples and for both marginal genetic and gene-environment interaction tests. We conducted simulations to validate our approximations and to provide a quantitative perspective on the statistical power of various scenarios, including power loss due to family relatedness and power gains due to conditioning on the polygenic signal. Our analyses also demonstrate that the power of gene-environment interaction GWAS in related individuals strongly depends on the family structure and exposure distribution. Finally, we performed a series of mixed-model GWAS on data from the UK Biobank and confirmed the simulation results. We notably found that the expected power drop due to family relatedness in the UK Biobank is negligible.


2017 ◽  
Author(s):  
Oriol Canela-Xandri ◽  
Konrad Rawlik ◽  
Albert Tenesa

ABSTRACTGenome-wide association studies have revealed many loci contributing to the variation of complex traits, yet the majority of loci that contribute to the heritability of complex traits remain elusive. Large study populations with sufficient statistical power are required to detect the small effect sizes of the yet unidentified genetic variants. However, the analysis of huge cohorts, like UK Biobank, is complicated by incidental structure present when collecting such large cohorts. For instance, UK Biobank comprises 107,162 third degree or closer related participants. Traditionally, GWAS have removed related individuals because they comprised an insignificant proportion of the overall sample size, however, removing related individuals in UK Biobank would entail a substantial loss of power. Furthermore, modelling such structure using linear mixed models is computationally expensive, which requires a computational infrastructure that may not be accessible to all researchers. Here we present an atlas of genetic associations for 118 non-binary and 599 binary traits of 408,455 related and unrelated UK Biobank participants of White-British descent. Results are compiled in a publicly accessible database that allows querying genome-wide association summary results for 623,944 genotyped and HapMap2 imputed SNPs, as well downloading whole GWAS summary statistics for over 30 million imputed SNPs from the Haplotype Reference Consortium panel. Our atlas of associations (GeneATLAS,http://geneatlas.roslin.ed.ac.uk) will help researchers to query UK Biobank results in an easy way without the need to incur in high computational costs.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 305
Author(s):  
Tianpeng Chang ◽  
Julong Wei ◽  
Mang Liang ◽  
Bingxing An ◽  
Xiaoqiao Wang ◽  
...  

Linear mixed model (LMM) is an efficient method for GWAS. There are numerous forms of LMM-based GWAS methods. However, improving statistical power and computing efficiency have always been the research hotspots of the LMM-based GWAS methods. Here, we proposed a fast empirical Bayes method, which is based on linear mixed models. We call it Fast-EB-LMM in short. The novelty of this method is that it uses a modified kinship matrix accounting for individual relatedness to avoid competition between the locus of interest and its counterpart in the polygene. This property has increased statistical power. We adopted two special algorithms to ease the computational burden: Eigenvalue decomposition and Woodbury matrix identity. Simulation studies showed that Fast-EB-LMM has significantly increased statistical power of marker detection and improved computational efficiency compared with two widely used GWAS methods, EMMA and EB. Real data analyses for two carcass traits in a Chinese Simmental beef cattle population showed that the significant single-nucleotide polymorphisms (SNPs) and candidate genes identified by Fast-EB-LMM are highly consistent with results of previous studies. We therefore believe that the Fast-EB-LMM method is a reliable and efficient method for GWAS.


2018 ◽  
Author(s):  
Haohan Wang ◽  
Fen Pei ◽  
Michael M. Vanyukov ◽  
Ivet Bahar ◽  
Wei Wu ◽  
...  

AbstractIn the last decade, Genome-wide Association studies (GWASs) have contributed to decoding the human genome by uncovering many genetic variations associated with various diseases. Many follow-up investigations involve joint analysis of multiple independently generated GWAS data sets. While most of the computational approaches developed for joint analysis are based on summary statistics, the joint analysis based on individual-level data with consideration of confounding factors remains to be a challenge. In this study, we propose a method, called Coupled Mixed Model (CMM), that enables a joint GWAS analysis on two independently collected sets of GWAS data with different phenotypes. The CMM method does not require the data sets to have the same phenotypes as it aims to infer the unknown phenotypes using a set of multivariate sparse mixed models. Moreover, CMM addresses the confounding variables due to population stratication, family structures, and cryptic relatedness, as well as those arising during data collection such as batch effects that frequently appear in joint genetic studies. We evaluate the performance of CMM using simulation experiments. In real data analysis, we illustrate the utility of CMM by an application to evaluating common genetic associations for Alzheimers disease and substance use disorder using datasets independently collected for the two complex human disorders. Comparison of the results with those from previous experiments and analyses supports the utility of our method and provides new insights into the diseases.The software is available at https://github.com/HaohanWang/CMM


2021 ◽  
Author(s):  
Si Fang ◽  
Gibran Hemani ◽  
Tom G Richardson ◽  
Tom R Gaunt ◽  
George Davey Smith

AbstractParticipant overlap has been thought to induce overfitting bias into Mendelian randomization (MR) and polygenic risk score (PRS) studies. This hinders the potential research into many unique traits and disease outcomes from large-scale biobanks. Here, we evaluated a block jackknife resampling framework for genome-wide association studies (GWAS) and PRS construction to mitigate the influence of overfitting bias on MR analyses compared to alternative approaches and implemented this study design in causal inference setting using data from the UK Biobank.We simulated PRS and MR under three scenarios: (1) using weighted SNP estimates from an external GWAS, (2) using weighted SNP estimates from an overlapping GWAS sample and (3) using a block jackknife resampling framework. Based on a conventional P-value threshold to derive genetic instruments for MR studies (P<5×10−8), our block-jackknifing PRS did not suffer from overfitting bias (mean R2=0.034) compared to the externally weighted PRS (mean R2=0.040). In contrast, genetic instruments derived from overlapping samples explained a higher proportion of variance (mean R2=0.048) compared to the externally derived score. The detrimental impact of overfitting bias became considerably larger when using a more liberal P-value threshold to construct PRS (e.g., P<0.05, mean R2=0.103), whereas estimates using jackknife score remained robust to overfitting (mean R2=0.084).In an applied setting, we examined (A) the effects of body mass index on circulating biomarkers and (B) the effect of childhood body size on levels of testosterone in adulthood using methods described above. In the first applied analysis, overlapping sample PRS and block jackknife resampled PRS led to comparable effect sizes, whereas narrower confidence intervals were identified when using the overlapping sample instrument. In the second example, through sex-stratified multivariable and bi-directional MR, we demonstrate that childhood body size indirectly leads to lower testosterone levels in adulthood in males, an effect mediated through adult body size.Author summaryUsing genetic variants as instrumental variables for risk factors, Mendelian randomization (MR) provides an approach to explore the genetically predicted effects of modifiable risk factors on disease which is robust to confounding and reverse causation. Genetic instrumental variables are conventionally selected from results of genome-wide association studies on an independent dataset whose sample does not overlap with the dataset being analysed using MR analysis, as this can lead to overfitting bias. This can often be challenging to entirely avoid however, as such association studies are increasingly being performed by meta-analysing several biobanks to achieve the maximum power to detect variants with smaller effect sizes. Moreover, when investigating exposures and outcomes which only a single biobank has measured in sufficiently large samples, avoiding participant overlap requires splitting the study population into subgroups which can limit statistical power. Block jackknife resampling MR provides a solution to conduct causal inference under these circumstances with the maximum statistical power while avoiding bias due to overlapping participants. In this study, we evaluated this study design with simulated dataset in comparison to MR using genetic variants discovered from an external dataset or one with overlapping samples. We applied this approach using UK Biobank to investigate the role of body mass index on circulating biomarkers, as well as the causal relationship between childhood adiposity and testosterone levels in adulthood.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Haohan Wang ◽  
Fen Pei ◽  
Michael M. Vanyukov ◽  
Ivet Bahar ◽  
Wei Wu ◽  
...  

Abstract Background In the last decade, Genome-wide Association studies (GWASs) have contributed to decoding the human genome by uncovering many genetic variations associated with various diseases. Many follow-up investigations involve joint analysis of multiple independently generated GWAS data sets. While most of the computational approaches developed for joint analysis are based on summary statistics, the joint analysis based on individual-level data with consideration of confounding factors remains to be a challenge. Results In this study, we propose a method, called Coupled Mixed Model (CMM), that enables a joint GWAS analysis on two independently collected sets of GWAS data with different phenotypes. The CMM method does not require the data sets to have the same phenotypes as it aims to infer the unknown phenotypes using a set of multivariate sparse mixed models. Moreover, CMM addresses the confounding variables due to population stratification, family structures, and cryptic relatedness, as well as those arising during data collection such as batch effects that frequently appear in joint genetic studies. We evaluate the performance of CMM using simulation experiments. In real data analysis, we illustrate the utility of CMM by an application to evaluating common genetic associations for Alzheimer’s disease and substance use disorder using datasets independently collected for the two complex human disorders. Comparison of the results with those from previous experiments and analyses supports the utility of our method and provides new insights into the diseases. The software is available at https://github.com/HaohanWang/CMM.


2021 ◽  
Vol 10 ◽  
pp. 204800402110236
Author(s):  
Julia Ramírez ◽  
Stefan van Duijvenboden ◽  
William J Young ◽  
Michele Orini ◽  
Aled R Jones ◽  
...  

The electrocardiogram (ECG) is a commonly used clinical tool that reflects cardiac excitability and disease. Many parameters are can be measured and with the improvement of methodology can now be quantified in an automated fashion, with accuracy and at scale. Furthermore, these measurements can be heritable and thus genome wide association studies inform the underpinning biological mechanisms. In this review we describe how we have used the resources in UK Biobank to undertake such work. In particular, we focus on a substudy uniquely describing the response to exercise performed at scale with accompanying genetic information.


2021 ◽  
Author(s):  
Robin N Beaumont ◽  
Isabelle K Mayne ◽  
Rachel M Freathy ◽  
Caroline F Wright

Abstract Birth weight is an important factor in newborn survival; both low and high birth weights are associated with adverse later-life health outcomes. Genome-wide association studies (GWAS) have identified 190 loci associated with maternal or fetal effects on birth weight. Knowledge of the underlying causal genes is crucial to understand how these loci influence birth weight and the links between infant and adult morbidity. Numerous monogenic developmental syndromes are associated with birth weights at the extreme ends of the distribution. Genes implicated in those syndromes may provide valuable information to prioritize candidate genes at the GWAS loci. We examined the proximity of genes implicated in developmental disorders (DDs) to birth weight GWAS loci using simulations to test whether they fall disproportionately close to the GWAS loci. We found birth weight GWAS single nucleotide polymorphisms (SNPs) fall closer to such genes than expected both when the DD gene is the nearest gene to the birth weight SNP and also when examining all genes within 258 kb of the SNP. This enrichment was driven by genes causing monogenic DDs with dominant modes of inheritance. We found examples of SNPs in the intron of one gene marking plausible effects via different nearby genes, highlighting the closest gene to the SNP not necessarily being the functionally relevant gene. This is the first application of this approach to birth weight, which has helped identify GWAS loci likely to have direct fetal effects on birth weight, which could not previously be classified as fetal or maternal owing to insufficient statistical power.


Author(s):  
Jianhua Wang ◽  
Dandan Huang ◽  
Yao Zhou ◽  
Hongcheng Yao ◽  
Huanhuan Liu ◽  
...  

Abstract Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS significant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.


Sign in / Sign up

Export Citation Format

Share Document