scholarly journals A chromosome-level genome assembly for the beet armyworm (Spodoptera exigua) using PacBio and Hi-C sequencing

Author(s):  
Feng Zhang ◽  
Jianpeng Zhang ◽  
Yihua Yang ◽  
Yidong Wu

AbstractBackgroundThe beet armyworm, Spodoptera exigua (Hübner), is a worldwide, polyphagous agricultural pest feeding on vegetable, field, and flower crops. However, the lack of genome information on this insect severely limits our understanding of its rapid adaptation and hampers the development of efficient pest management strategies.FindingsWe report a chromosome-level genome assembly using single-molecule real-time PacBio sequencing and Hi-C data. The final genome assembly was 446.80 Mb with a scaffold N50 of 14.36 Mb, and captured 97.9% complete arthropod Benchmarking Universal Single-Copy Orthologs (BUSCO, n=1,658). A total of 367 contigs were anchored to 32 pseudo-chromosomes, covering 96.18% (429.74 Mb) of the total genome length. We predicted 17,727 protein-coding genes, of which 81.60% were supported by transcriptome evidence and 96.47% matched UniProt protein records. We also identified 867,102 (147.97 Mb/33.12%) repetitive elements and 1,609 noncoding RNAs. Synteny inference indicated a conserved collinearity between three lepidopteran species. Gene family evolution and function enrichment analyses showed the significant expansions in families related to development, dietary, detoxification and chemosensory system, indicating these families may play a role in host plant specialization and niche adaptation.ConclusionsWe have generated a high-quality chromosomal-level genome that could provide a valuable resource for a better understanding and management of the beet armyworm.

GigaScience ◽  
2020 ◽  
Vol 9 (10) ◽  
Author(s):  
Yan Li ◽  
Guangliang Gao ◽  
Yu Lin ◽  
Silu Hu ◽  
Yi Luo ◽  
...  

ABSTRACT Background The domestic goose is an economically important and scientifically valuable waterfowl; however, a lack of high-quality genomic data has hindered research concerning its genome, genetics, and breeding. As domestic geese breeds derive from both the swan goose (Anser cygnoides) and the graylag goose (Anser anser), we selected a female Tianfu goose for genome sequencing. We generated a chromosome-level goose genome assembly by adopting a hybrid de novo assembly approach that combined Pacific Biosciences single-molecule real-time sequencing, high-throughput chromatin conformation capture mapping, and Illumina short-read sequencing. Findings We generated a 1.11-Gb goose genome with contig and scaffold N50 values of 1.85 and 33.12 Mb, respectively. The assembly contains 39 pseudo-chromosomes (2n = 78) accounting for ∼88.36% of the goose genome. Compared with previous goose assemblies, our assembly has more continuity, completeness, and accuracy; the annotation of core eukaryotic genes and universal single-copy orthologs has also been improved. We have identified 17,568 protein-coding genes and a repeat content of 8.67% (96.57 Mb) in this genome assembly. We also explored the spatial organization of chromatin and gene expression in the goose liver tissues, in terms of inter-pseudo-chromosomal interaction patterns, compartments, topologically associating domains, and promoter-enhancer interactions. Conclusions We present the first chromosome-level assembly of the goose genome. This will be a valuable resource for future genetic and genomic studies on geese.


2020 ◽  
Author(s):  
Guifang Lin ◽  
Cheng He ◽  
Jun Zheng ◽  
Dal-Hoe Koo ◽  
Ha Le ◽  
...  

ABSTRACTThe highly embryogenic and transformable maize inbred line A188 is an attractive model for analyzing maize gene function. Here we constructed a chromosome-level genome assembly of A188 using long reads and optical maps. Genome comparison of A188 with the reference line B73 identified pervasive structural variation, including a 1.8 Mb duplication on the Gametophyte factor1 locus for unilateral cross-incompatibility and six inversions of 0.7 Mb or greater. Increased copy number of the gene, carotenoid cleavage dioxygenase 1 (ccd1) in A188 is associated with elevated expression during seed development. High ccd1 expression together with low expression of yellow endosperm 1 (y1) condition reduced carotenoid accumulation, which accounts for the white seed phenotype of A188 that contrasts with the yellow seed of B73 that has high expression of y1 and low expression of the single-copy ccd1. Further, transcriptome and epigenome analyses with the A188 reference genome revealed enhanced expression of defense pathways and altered DNA methylation patterns of embryonic callus.


2021 ◽  
Author(s):  
Sabrina Simon ◽  
Thijmen Breeschoten ◽  
Hans J Jansen ◽  
Ron P Dirks ◽  
M. Eric Schranz ◽  
...  

Background: The genus Spodoptera (Lepidoptera: Noctuidae) includes some of the most infamous insect pests of cultivated plants including Spodoptera frugiperda, Spodoptera litura and Spodoptera exigua. To effectively develop targeted pest control strategies for diverse Spodoptera species, genomic resources are highly desired. To this aim, we provide the genome assembly and developmental transcriptome comprising all major life stages of S. exigua, the beet armyworm. Spodoptera exigua is a polyphagous herbivore that can feed from > 130 host plants including several economically important crops. Results: The 419 Mb beet armyworm genome was sequenced from a female S. exigua pupa. Using a hybrid genome sequencing approach (Nanopore long read data and Illumina short read), a high-quality genome assembly was achieved (N50=1.1 Mb). An official gene set (OGS, 18,477 transcripts) was generated by automatic annotation and by using transcriptomic RNA-seq data sets of 18 S. exigua samples as supporting evidence. In-depth analyses of developmental stage-specific expression in combination with gene tree analyses of identified homologous genes across Lepidoptera genomes revealed potential Spodoptera-specific genes of interest such as mg7 and REPAT46 upregulated during 1st and 3rd instar larval stages for targeted pest-outbreak management. Conclusions: The beet armyworm genome sequence and developmental transcriptome covering all major developmental stages provides critical insights into the biology of this devastating polyphagous insect pest species with a worldwide distribution. In addition, comparative genomic analyses across Lepidoptera significantly advance our knowledge to further control other invasive Spodoptera species and reveals potential lineage-specific target genes for pest control strategies.


GigaScience ◽  
2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Xupo Ding ◽  
Wenli Mei ◽  
Qiang Lin ◽  
Hao Wang ◽  
Jun Wang ◽  
...  

Abstract Backgroud Aquilaria sinensis (Lour.) Spreng is one of the important plant resources involved in the production of agarwood in China. The agarwood resin collected from wounded Aquilaria trees has been used in Asia for aromatic or medicinal purposes from ancient times, although the mechanism underlying the formation of agarwood still remains poorly understood owing to a lack of accurate and high-quality genetic information. Findings We report the genomic architecture of A. sinensis by using an integrated strategy combining Nanopore, Illumina, and Hi-C sequencing. The final genome was ∼726.5 Mb in size, which reached a high level of continuity and a contig N50 of 1.1 Mb. We combined Hi-C data with the genome assembly to generate chromosome-level scaffolds. Eight super-scaffolds corresponding to the 8 chromosomes were assembled to a final size of 716.6 Mb, with a scaffold N50 of 88.78 Mb using 1,862 contigs. BUSCO evaluation reveals that the genome completeness reached 95.27%. The repeat sequences accounted for 59.13%, and 29,203 protein-coding genes were annotated in the genome. According to phylogenetic analysis using single-copy orthologous genes, we found that A. sinensis is closely related to Gossypium hirsutum and Theobroma cacao from the Malvales order, and A. sinensis diverged from their common ancestor ∼53.18–84.37 million years ago. Conclusions Here, we present the first chromosome-level genome assembly and gene annotation of A. sinensis. This study should contribute to valuable genetic resources for further research on the agarwood formation mechanism, genome-assisted improvement, and conservation biology of Aquilaria species.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1993
Author(s):  
Xiaolong Gan ◽  
Shiming Li ◽  
Yuan Zong ◽  
Dong Cao ◽  
Yun Li ◽  
...  

Potentilla anserina is a perennial stoloniferous plant with edible tuberous roots in Rosaceae, served as important food and medicine sources for Tibetans in the Qinghai-Tibetan Plateau (QTP), China, over thousands of years. However, a lack of genome information hindered the genetic study. Here, we presented a chromosome-level genome assembly using single-molecule long-read sequencing, and the Hi-C technique. The assembled genome was 454.28 Mb, containing 14 chromosomes, with contig N50 of 2.14 Mb. A total of 46,495 protein-coding genes, 169.74 Mb repeat regions, and 31.76 Kb non-coding RNA were predicted. P. anserina diverged from Potentilla micrantha ∼28.52 million years ago (Mya). Furthermore, P. anserina underwent a recent tetraploidization ∼6.4 Mya. The species-specific genes were enriched in Starch and sucrose metabolism and Galactose metabolism pathways. We identified the sub-genome structures of P. anserina, with A sub-genome was larger than B sub-genome and closer to P. micrantha phylogenetically. Despite lacking significant genome-wide expression dominance, the A sub-genome had higher homoeologous gene expression in shoot apical meristem, flower and tuberous root. The resistance genes was contracted in P. anserina genome. Key genes involved in starch biosynthesis were expanded and highly expressed in tuberous roots, which probably drives the tuber formation. The genomics and transcriptomics data generated in this study advance our understanding of the genomic landscape of P. anserina, and will accelerate genetic studies and breeding programs.


2020 ◽  
Vol 12 (6) ◽  
pp. 860-866 ◽  
Author(s):  
Qing-Song Zhou ◽  
Arong Luo ◽  
Feng Zhang ◽  
Ze-Qing Niu ◽  
Qing-Tao Wu ◽  
...  

Abstract Despite intense interest in bees, no genomes are available for the bee family Colletidae. Colletes gigas, one of the largest species of the genus Colletes in the world, is an ideal candidate to fill this gap. Endemic to China, C. gigas has been the focus of studies on its nesting biology and pollination of the economically important oil tree Camellia oleifera, which is chemically defended. To enable deeper study of its biology, we sequenced the whole genome of C. gigas using single-molecule real-time sequencing on the Pacific Bioscience Sequel platform. In total, 40.58 G (150×) of long reads were generated and the final assembly of 326 scaffolds was 273.06 Mb with a N50 length of 8.11 Mb, which captured 94.4% complete Benchmarking Universal Single-Copy Orthologs. We predicted 11,016 protein-coding genes, of which 98.50% and 84.75% were supported by protein- and transcriptome-based evidence, respectively. In addition, we identified 26.27% of repeats and 870 noncoding RNAs. The bee phylogeny with this newly sequenced colletid genome is consistent with available results, supporting Colletidae as sister to Halictidae when Stenotritidae is not included. Gene family evolution analyses identified 9,069 gene families, of which 70 experienced significant expansions (33 families) or contractions (37 families), and it appears that olfactory receptors and carboxylesterase may be involved in specializing on and detoxifying Ca. oleifera pollen. Our high-quality draft genome for C. gigas lays the foundation for insights on the biology and behavior of this species, including its evolutionary history, nesting biology, and interactions with the plant Ca. oleifera.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Xuchen Yang ◽  
Minghui Kang ◽  
Yanting Yang ◽  
Haifeng Xiong ◽  
Mingcheng Wang ◽  
...  

AbstractThe deciduous Chinese tupelo (Nyssa sinensis Oliv.) is a popular ornamental tree for the spectacular autumn leaf color. Here, using single-molecule sequencing and chromosome conformation capture data, we report a high-quality, chromosome-level genome assembly of N. sinensis. PacBio long reads were de novo assembled into 647 polished contigs with a total length of 1,001.42 megabases (Mb) and an N50 size of 3.62 Mb, which is in line with genome sizes estimated using flow cytometry and the k-mer analysis. These contigs were further clustered and ordered into 22 pseudo-chromosomes based on Hi-C data, matching the chromosome counts in Nyssa obtained from previous cytological studies. In addition, a total of 664.91 Mb of repetitive elements were identified and a total of 37,884 protein-coding genes were predicted in the genome of N. sinensis. All data were deposited in publicly available repositories, and should be a valuable resource for genomics, evolution, and conservation biology.


2021 ◽  
Vol 13 (4) ◽  
Author(s):  
María Recuerda ◽  
Joel Vizueta ◽  
Cristian Cuevas-Caballé ◽  
Guillermo Blanco ◽  
Julio Rozas ◽  
...  

Abstract The common chaffinch, Fringilla coelebs, is one of the most common, widespread, and well-studied passerines in Europe, with a broad distribution encompassing Western Europe and parts of Asia, North Africa, and the Macaronesian archipelagos. We present a high-quality genome assembly of the common chaffinch generated using Illumina shotgun sequencing in combination with Chicago and Hi-C libraries. The final genome is a 994.87-Mb chromosome-level assembly, with 98% of the sequence data located in chromosome scaffolds and a N50 statistic of 69.73 Mb. Our genome assembly shows high completeness, with a complete BUSCO score of 93.9% using the avian data set. Around 7.8% of the genome contains interspersed repetitive elements. The structural annotation yielded 17,703 genes, 86.5% of which have a functional annotation, including 7,827 complete universal single-copy orthologs out of 8,338 genes represented in the BUSCO avian data set. This new annotated genome assembly will be a valuable resource as a reference for comparative and population genomic analyses of passerine, avian, and vertebrate evolution.


Sign in / Sign up

Export Citation Format

Share Document