scholarly journals Ultra-fast electroporation of giant unilamellar vesicles — Experimental validation of a molecular model

2020 ◽  
Author(s):  
Esin B. Sözer ◽  
Sourav Haldar ◽  
Paul S. Blank ◽  
Federica Castellani ◽  
P. Thomas Vernier ◽  
...  

AbstractDelivery of molecules to cells via electropermeabilization (electroporation) is a common procedure in laboratories and clinics. However, despite a long history of theoretical effort, electroporation protocols are still based on trial and error because the biomolecular structures and mechanisms underlying this phenomenon have not been established. Electroporation models, developed to explain observations of electrical breakdown of lipid membranes, describe the electric field-driven formation of pores in lipid bilayers. These transient pore models are consistent with molecular dynamics simulations, where field-stabilized lipid pores form within a few nanoseconds and collapse within tens of nanoseconds after the field is removed. Here we experimentally validate this nanoscale restructuring of bio-membranes by measuring the kinetics of transport of the impermeant fluorescent dye calcein into lipid vesicles exposed to ultrashort electric fields (6 ns and 2 ns), and by comparing these results to molecular simulations. Molecular transport after vesicle permeabilization induced by multiple pulses is additive for interpulse intervals as short as 50 ns, while the additive property of transport is no longer observed when the interval is reduced to 0 ns, consistent with the lifetimes of lipid electropores in molecular simulations. These results show that lipid vesicle responses to pulsed electric fields are significantly different from those of living cells where, for similar pulse properties, the uptake of fluorescent dye continues for several minutes.Graphical abstract

Author(s):  
M. E. Bisher ◽  
D. K. Fygensont ◽  
F. Booy ◽  
A. Libchabert ◽  
M. M. J. Treacy

The dimeric protein tubulin is found in every eukaryotic cell. In the presence of GTP and Mg++ cations, tubulin polymerizes into long hollow cylinders known as microtubules, that are 24 nm in diameter and can grow as long as 10-100 μm in length. Microtubules play an important role in living cells: they act as guides for internal molecular transport (most notably the separation of genetic material during anaphase in cell division), they are a major component of the cytoskeleton, and are important structural constituents of cilia and flagellae. Locomotion, morphogenesis and reproduction, are fundamental cellular processes that rely on the polymerization of microtubules and on their ability to re-organize - a feature termed dynamic instability.Tubulin, purified from fresh cow brain, exhibits this dynamic instability in the laboratory in the absence of microtubule-associated protein. Length fluctuations can be observed by differential interference contrast (DIC) optical microscopy. The instability persists when tubulin is encapsulated in lipid vesicles (liposomes), formed by adding the phospholipids DOPC and DOPS, and applying the freeze-thaw technique to the mixture. Fig. 1 shows a DIC optical micrograph of a ˜5 (im lipid vesicle that is distorted, or impaled, by a 12 μm rod which is presumably a microtubule, or a bundle of microtubules. Frequently, such microtubules are observed to buckle because of reaction forces from the membrane.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 847
Author(s):  
Victoria Vitkova ◽  
Vesela Yordanova ◽  
Galya Staneva ◽  
Ognyan Petkov ◽  
Angelina Stoyanova-Ivanova ◽  
...  

Simple carbohydrates are associated with the enhanced risk of cardiovascular disease and adverse changes in lipoproteins in the organism. Conversely, sugars are known to exert a stabilizing effect on biological membranes, and this effect is widely exploited in medicine and industry for cryopreservation of tissues and materials. In view of elucidating molecular mechanisms involved in the interaction of mono- and disaccharides with biomimetic lipid systems, we study the alteration of dielectric properties, the degree of hydration, and the rotational order parameter and dipole potential of lipid bilayers in the presence of sugars. Frequency-dependent deformation of cell-size unilamellar lipid vesicles in alternating electric fields and fast Fourier transform electrochemical impedance spectroscopy are applied to measure the specific capacitance of phosphatidylcholine lipid bilayers in sucrose, glucose and fructose aqueous solutions. Alteration of membrane specific capacitance is reported in sucrose solutions, while preservation of membrane dielectric properties is established in the presence of glucose and fructose. We address the effect of sugars on the hydration and the rotational order parameter for 1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine (POPC) and 1-stearoyl-2-oleoyl-sn-glycero-3- phosphocholine (SOPC). An increased degree of lipid packing is reported in sucrose solutions. The obtained results provide evidence that some small carbohydrates are able to change membrane dielectric properties, structure, and order related to membrane homeostasis. The reported data are also relevant to future developments based on the response of lipid bilayers to external physical stimuli such as electric fields and temperature changes.


Open Biology ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 170142 ◽  
Author(s):  
Emelie Perland ◽  
Sonchita Bagchi ◽  
Axel Klaesson ◽  
Robert Fredriksson

Solute carriers (SLCs) are vital as they are responsible for a major part of the molecular transport over lipid bilayers. At present, there are 430 identified SLCs, of which 28 are called atypical SLCs of major facilitator superfamily (MFS) type. These are MFSD1, 2A, 2B, 3, 4A, 4B, 5, 6, 6 L, 7, 8, 9, 10, 11, 12, 13A, 14A and 14B; SV2A, SV2B and SV2C; SVOP and SVOPL; SPNS1, SPNS2 and SPNS3; and UNC93A and UNC93B1. We studied their fundamental properties, and we also included CLN3, an atypical SLC not yet belonging to any protein family (Pfam) clan, because its involvement in the same neuronal degenerative disorders as MFSD8. With phylogenetic analyses and bioinformatic sequence comparisons, the proteins were divided into 15 families, denoted atypical MFS transporter families (AMTF1-15). Hidden Markov models were used to identify orthologues from human to Drosophila melanogaster and Caenorhabditis elegans . Topology predictions revealed 12 transmembrane segments (for all except CLN3), corresponding to the common MFS structure. With single-cell RNA sequencing and in situ proximity ligation assay on brain cells, co-expressions of several atypical SLCs were identified. Finally, the transcription levels of all genes were analysed in the hypothalamic N25/2 cell line after complete amino acid starvation, showing altered expression levels for several atypical SLCs.


2013 ◽  
Vol 19 (S4) ◽  
pp. 107-108 ◽  
Author(s):  
A.A. Duarte ◽  
M. Raposo

Liposomes or lipid vesicles are self-closed structures formed by one or several concentric lipid bilayers with an aqueous phase inside, which may incorporate almost any molecule, namely proteins, hormones, enzymes, antibiotics, anticancer agents, antifungical agents, gene transfer agents, DNA, and whole viruses. Scientific evidences prove that unprotected liposomes containing drugs are easily released from the endoplasmic reticulum of the cell. To increase the vesicles lifetime and to activate a controlled drug release with an external stimulus, the vesicles immobilization on a surface and the factors which create conditions to the liposome rupture have to be analyzed. A number of studies have identified some of the critical stages of vesicle adsorption (adhesion), fusion, deformation, rupture, and spreading of the lipid bilayer. Nevertheless, the formation mechanisms of well-controlled continuous supported bilayers or adsorption of whole liposomes are still not fully understood. As yet it was demonstrated that a controlled adsorption of vesicles containing a small fraction of charged lipids occurs without rupture and their subsequent embedding in polyelectrolyte multilayer (PEM) films, meaning vesicles may be immobilized in an intact or slightly deformed state, which can act as drug reservoirs. Moreover, depending on the nature of the physicochemical conditions of the vesicle solution and the substrate surface, a flat lipid bilayer can be formed, known as supported lipid bilayers, which can incorporate membrane proteins and keep the native dynamics of the lipid bilayer mimicking a biological membrane. In this study, a layer of 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DPPG) liposomes adsorbed onto PEMs cushions based on poly(ethylenimine) (PEI), poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) polyelectrolytes was analyzed by atomic force microscopy (AFM) technique in non-contact mode and quartz crystal microbalance (QCM).Sequential heterostructures of Si/PEI(PSS/PAH)4 and Si/PAH, also designated cushions, were prepared onto silicon substrates using the layer-by-layer (LbL) technique with polyelectrolyte solutions of PEI, PSS and PAH of monomeric concentrations of 0.01M. Topographic images of 1×1μm2 area of Si/PAH/DPPG (Figure 1 a), and Si/PEI(PSS/PAH)4/DPPG (Figure 1 b) LbL films were acquired by AFM. The root mean square roughness (RMS) calculated from topographies data are listed in table I. As shown, when a DPPG layer is adsorbed onto Si/PAH the RMS keeps an approximately equal value meaning that the liposome disrupted and spread onto the surface forming a planar lipid bilayer. But when a DPPG layer is adsorbed onto Si/PEI(PSS/PAH)4 the RMS value doubled, indicating that the structural integrity of the liposomes is maintained, even though there has been any deformation during adsorption. The adsorbed amount of the two PEMs and DPPG-liposomes layers was measured using a QCM and is displayed in table I. The DPPG adsorbed amount obtained on the PAH cushion was approximately equal to a planar lipid bilayer, while the adsorption onto PEI(PSS/PAH)4 was higher than the predicted for a planar lipid bilayer. This behavior suggests that the DPPG liposomes on the second PEM remained intact during adsorption. Both confirm the AFM results. Therefore we conclude that the initial roughness of the surface is a primordial factor to determine the adsorption or not of intact vesicles.The authors acknowledge the “Fundação para a Ciência e Tecnologia” (FCT-MEC) by the post-graduate scholarship SFRH/BD/62229/2009 and the “Plurianual” funding.


1998 ◽  
Vol 26 (4) ◽  
pp. 188-199
Author(s):  
E Kyriacou

The study of molecular transport across gall-bladder epithelium may contribute to our understanding of the pathophysiology of gall-bladder disease. The aim of this study was to reconstitute and characterize single potassium ion channels in bovine gall-bladder epithelial mucosa – both apical and basolateral aspects. Standard subcellular fractionation techniques were used to form either apical or basolateral closed-membrane vesicles from the mucosal epithelium of fresh gall bladders from healthy young adult cattle. Vesicular ion channels were incorporated into voltage-clamped planar lipid bilayers under known ionic conditions and their conductances, reversal potentials, and voltages were characterized. Low-conductance voltage-insensitive apical membrane vesicle channels of at least four conductance levels were found (mean ± SD): 12 ± 4 pS, n = 10; 40 ± 12 pS, n = 4; 273 ± 31 pS, n = 3; and 151 ± 24 pS, n = 5. Conductances of potassium ion channels in basolateral membrane vesicles were in the range 9–450 pS, and these channels included high-conductance calcium-activated potassium-ion channels ‘K(Ca)’ which were voltage- and calcium-dependent.


Soft Matter ◽  
2018 ◽  
Vol 14 (28) ◽  
pp. 5764-5774 ◽  
Author(s):  
F. Mousseau ◽  
J.-F. Berret

Inhaled nanoparticles reaching the respiratory zone in the lungs enter first in contact with the pulmonary surfactant. It is shown here that nanoparticles and lipid vesicles formulated from different surfactant mimetics interact predominantlyviaelectrostatic charge mediated attraction and do not form supported lipid bilayers spontaneously.


2002 ◽  
Vol 283 (1) ◽  
pp. F150-F163 ◽  
Author(s):  
Edgar Leal-Pinto ◽  
B. Eleazar Cohen ◽  
Michael S. Lipkowitz ◽  
Ruth G. Abramson

Recombinant protein, designated hUAT, the human homologue of the rat urate transporter/channel (UAT), functions as a highly selective urate channel in lipid bilayers. Functional analysis indicates that hUAT activity, like UAT, is selectively blocked by oxonate from its cytosolic side, whereas pyrazinoate and adenosine selectively block from the channel's extracellular face. Importantly, hUAT is a galectin, a protein with two β-galactoside binding domains that bind lactose. Lactose significantly increased hUAT open probability but only when added to the channel's extracellular side. This effect on open probability was mimicked by glucose, but not ribose, suggesting a role for extracellular glucose in regulating hUAT channel activity. These functional observations support a four-transmembrane-domain structural model of hUAT, as previously predicted from the primary structure of UAT. hUAT and UAT, however, are not functionally identical: hUAT has a significantly lower single-channel conductance and open probability is voltage independent. These differences suggest that evolutionary changes in specific amino acids in these highly homologous proteins are functionally relevant in defining these biophysical properties.


2020 ◽  
Vol 117 (23) ◽  
pp. 12643-12650 ◽  
Author(s):  
Corleone S. Delaveris ◽  
Elizabeth R. Webster ◽  
Steven M. Banik ◽  
Steven G. Boxer ◽  
Carolyn R. Bertozzi

The mechanism(s) by which cell-tethered mucins modulate infection by influenza A viruses (IAVs) remain an open question. Mucins form both a protective barrier that can block virus binding and recruit IAVs to bind cells via the sialic acids of cell-tethered mucins. To elucidate the molecular role of mucins in flu pathogenesis, we constructed a synthetic glycocalyx to investigate membrane-tethered mucins in the context of IAV binding and fusion. We designed and synthesized lipid-tethered glycopolypeptide mimics of mucins and added them to lipid bilayers, allowing chemical control of length, glycosylation, and surface density of a model glycocalyx. We observed that the mucin mimics undergo a conformational change at high surface densities from a compact to an extended architecture. At high surface densities, asialo mucin mimics inhibited IAV binding to underlying glycolipid receptors, and this density correlated to the mucin mimic’s conformational transition. Using a single virus fusion assay, we observed that while fusion of virions bound to vesicles coated with sialylated mucin mimics was possible, the kinetics of fusion was slowed in a mucin density-dependent manner. These data provide a molecular model for a protective mechanism by mucins in IAV infection, and therefore this synthetic glycocalyx provides a useful reductionist model for studying the complex interface of host–pathogen interactions.


Sign in / Sign up

Export Citation Format

Share Document