potassium ion channels
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 17)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Keita TAMURA ◽  
Masafumi MURAJI ◽  
Kenji Tanaka ◽  
Tatsuru Shirafuji

Abstract The mechanism through which nonlinearity is generated in the response waveform of the electric current obtained by applying alternating current voltage to yeast suspension has not yet been elucidated. In this paper, we showed that the response waveform depends on the applied voltage and frequency. The results showed that distortion (nonlinearity) in the waveform increases as the applied voltage increases and/or the frequency decreases. We suggest a model for the generation of nonlinearity based on the influx of potassium ions into the cell via potassium ion channels and transporters in the membrane due to the applied voltage. Furthermore, we validated this model by simulating an electrical circuit.


2021 ◽  
Author(s):  
Masafumi Muraji ◽  
Keita Tamura ◽  
Kenji Tanaka ◽  
Tatsuru Shirafuji

Abstract The mechanism through which nonlinearity is generated in the response waveform of the electric current obtained by applying alternating current voltage to yeast suspension has not yet been elucidated. In this paper, we showed that the response waveform depends on the applied voltage and frequency. The results showed that distortion (nonlinearity) in the waveform increases as the applied voltage increases and/or the frequency decreases. We suggest a model for the generation of nonlinearity based on the influx of potassium ions into the cell via potassium ion channels and transporters in the membrane due to the applied voltage. Furthermore, we validated this model by simulating an electrical circuit.


Author(s):  
Zonglin Gu ◽  
Austin M. Baggetta ◽  
Yu Chong ◽  
Leigh D. Plant ◽  
Xuan-Yu Meng ◽  
...  

2021 ◽  
Author(s):  
Mehmet Akif Ovali ◽  
Rahime Ozlem Oztopuz ◽  
Selma Arzu Vardar

Abstract The authors have requested that this preprint be removed from Research Square.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10973
Author(s):  
Hyun Jong Kim ◽  
Seorin Park ◽  
Hui Young Shin ◽  
Yu Ran Nam ◽  
Phan Thi Lam Hong ◽  
...  

Background As one of the main components of mangosteen (Garcinia mangostana), a tropical fruit, α-mangostin has been reported to have numerous pharmacological benefits such as anti-cancer, anti-inflammatory, and anti-allergic effects through various mechanisms of action. The effects of α-mangostin on intracellular signaling proteins is well studied, but the effects of α-mangostin on ion channels and its physiological effects in immune cells are unknown. Generation of intracellular calcium signaling is a fundamental step for T cell receptor stimulation. This signaling is mediated not only by the ORAI1 calcium channel, but also by potassium ion channels, which provide the electrical driving forces for generating sufficient calcium ion influx. This study investigated whether α-mangosteen suppress T cell stimulation by inhibiting ORAI1 and two kinds of potassium channels (Kv1.3 and KCa3.1), which are normally expressed in human T cells. Methods This study analyzed the inhibitory effect of α-mangostin on immune cell activity via inhibition of calcium and potassium ion channels expressed in immune cells. Results α-mangostin inhibited ORAI1 in a concentration-dependent manner, and the IC50 value was 1.27 ± 1.144 µM. Kv1.3 was suppressed by 41.38 ± 6.191% at 3 µM, and KCa3.1 was suppressed by 51.16 ± 5.385% at 3 µM. To measure the inhibition of cytokine secretion by immune cells, Jurkat T cells were stimulated to induce IL-2 secretion, and α-mangostin was found to inhibit it. This study demonstrated the anti-inflammatory effect of α-mangostin, the main component of mangosteen, through the regulation of calcium signals.


2021 ◽  
pp. 507-545
Author(s):  
Janna Bednenko ◽  
Paul Colussi ◽  
Sunyia Hussain ◽  
Yihui Zhang ◽  
Theodore Clark

2021 ◽  
Vol 17 ◽  
pp. 174480692110403
Author(s):  
F Fan ◽  
Y Chen ◽  
Z Chen ◽  
L Guan ◽  
Z Ye ◽  
...  

Background Visceral hypersensitivity in irritable bowel syndrome (IBS) is still poorly understood, despite that chronic abdominal pain is the most common symptoms in IBS patients. To study effects of BK channels on visceral hypersensitivity in IBS rats and the underlying mechanisms, IBS rats were established by colorectal distention (CRD) in postnatal rats. The expression of large-conductance calcium and voltage-dependent potassium ion channels (BK channels) of the thoracolumbar spinal cord was examined in IBS and control rats. The effects of BK channel blockade on visceral hypersensitivity were evaluated. The interaction of BK channels and N-methyl-D-aspartate acid (NMDA) receptors was explored, and synaptic transmission at superficial dorsal horn (SDH) neurons of the thoracolumbar spinal cord was recorded by whole-cell patch clamp in IBS rats. Results The expression of the BK channels of the thoracolumbar spinal cord in IBS rats was significantly reduced. The blockade of BK channels could reduce the visceral hypersensitivity in IBS rats. There was an interaction between BK channels and NMDA receptors in the spinal cord. The frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in SDH neurons is significantly reduced in IBS rats. The blockade of BK channels depolarizes the inhibitory interneuron membrane and increases their excitability in IBS rats. Conclusions BK channels could interact with NMDA receptors in the thoracolumbar spinal cord of rats and regulate visceral hypersensitivity in IBS rats.


Author(s):  
Barbara Peixoto Pinheiro ◽  
Barbara Vona ◽  
Hubert Löwenheim ◽  
Lukas Rüttiger ◽  
Marlies Knipper ◽  
...  

AbstractAge-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly and constitutes the third highest risk factor for dementia. Lifetime noise exposure, genetic predispositions for degeneration, and metabolic stress are assumed to be the major causes of ARHL. Both noise-induced and hereditary progressive hearing have been linked to decreased cell surface expression and impaired conductance of the potassium ion channel KV7.4 (KCNQ4) in outer hair cells, inspiring future therapies to maintain or prevent the decline of potassium ion channel surface expression to reduce ARHL. In concert with KV7.4 in outer hair cells, KV7.1 (KCNQ1) in the stria vascularis, calcium-activated potassium channels BK (KCNMA1) and SK2 (KCNN2) in hair cells and efferent fiber synapses, and KV3.1 (KCNC1) in the spiral ganglia and ascending auditory circuits share an upregulated expression or subcellular targeting during final differentiation at hearing onset. They also share a distinctive fragility for noise exposure and age-dependent shortfalls in energy supply required for sustained surface expression. Here, we review and discuss the possible contribution of select potassium ion channels in the cochlea and auditory pathway to ARHL. We postulate genes, proteins, or modulators that contribute to sustained ion currents or proper surface expressions of potassium channels under challenging conditions as key for future therapies of ARHL.


Sign in / Sign up

Export Citation Format

Share Document