scholarly journals An Arabidopsis AT-hook motif nuclear protein mediates somatic embryogenesis and coinciding genome duplication

2020 ◽  
Author(s):  
Omid Karami ◽  
Arezoo Rahimi ◽  
Patrick Mak ◽  
Anneke Horstman ◽  
Kim Boutilier ◽  
...  

AbstractPlant somatic cells can be reprogrammed to totipotent embryonic cells that are able to form differentiated embryos in a process called somatic embryogenesis (SE), by hormone treatment or through overexpression of certain transcription factor genes, such as BABY BOOM (BBM). Here we show that overexpression of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED 15 (AHL15) gene induces formation of somatic embryos on Arabidopsis thaliana seedlings in the absence of hormone treatment. During zygotic embryogenesis, AHL15 expression starts early in embryo development, and AH15 and other AHL genes are required for proper embryo patterning and development beyond the heart stage. Moreover, AHL15 and several of its homologs are upregulated and required for SE induction upon hormone treatment, and they are required for efficient BBM-induced SE as downstream targets of BBM. A significant number of plants derived from AHL15 overexpression-induced somatic embryos are polyploid. Polyploidisation occurs by endomitosis specifically during the initiation of SE, assumingly due to AHL15-mediated heterochromatin decondensation coinciding with the acquisition of embryonic competency in somatic plant cells.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Omid Karami ◽  
Arezoo Rahimi ◽  
Patrick Mak ◽  
Anneke Horstman ◽  
Kim Boutilier ◽  
...  

AbstractPlant somatic cells can be reprogrammed into totipotent embryonic cells that are able to form differentiated embryos in a process called somatic embryogenesis (SE), by hormone treatment or through overexpression of certain transcription factor genes, such as BABY BOOM (BBM). Here we show that overexpression of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED 15 (AHL15) gene induces formation of somatic embryos on Arabidopsis thaliana seedlings in the absence of hormone treatment. During zygotic embryogenesis, AHL15 expression starts early in embryo development, and AH15 and other AHL genes are required for proper embryo patterning and development beyond the globular stage. Moreover, AHL15 and several of its homologs are upregulated and required for SE induction upon hormone treatment, and they are required for efficient BBM-induced SE as downstream targets of BBM. A significant number of plants derived from AHL15 overexpression-induced somatic embryos are polyploid. Polyploidisation occurs by endomitosis specifically during the initiation of SE, and is caused by strong heterochromatin decondensation induced by AHL15 overexpression.


2021 ◽  
Vol 306 ◽  
pp. 01056
Author(s):  
Sulistyani Pancaningtyas

Somatic embryogenesis is one of the newest technology that applied for the mass production of cocoa. This research aims to evaluate the regeneration rate of somatic embryos through somatic embryogenesis propagation techniques on java fine flavor cocoa. Cultivars in this study are ICCRI 01, ICCRI 02, DR 1, DR 2, DRC 16, DR 38, PNT 16, and PNT 30. Observations include parameters to determine the percentage of primary callus and embryogenic callus formation and the number of somatic embryos produced. Based on data, the ability of callus to produce primary embryos is highly dependent on plant cultivars and explant sources. Five cultivars showed a higher regeneration rate using explants from the petal part, while the rest showed a higher regeneration rate using explants from the staminode section. Embryogenic callus from each cacao cultivar has the same basic structure: a nodular friable structure consisting of many embryonic cells. Some fine flavor cacao cultivars that were able to produce callus and primary somatic embryos could not produce secondary somatic embryos and plantlets. However, two cultivars, which had low potential in producing primary embryos, had the high ability to produce secondary somatic embryos and develop into plantlets.


2019 ◽  
Vol 47 (4) ◽  
pp. 1348-1358
Author(s):  
Ruyue JING ◽  
Peilan WANG ◽  
Zhen HUANG ◽  
Zhihui LI

Histocytological studies were conducted on primary, secondary, and malformed embryos produced during somatic embryogenesis of Cinnamomum camphora L. to better understand its development. Exploring its callus types and structures provided a theoretical basis for clarifying the mechanism of somatic embryogenesis, which may shed light on the mechanism of zygotic embryogenesis. We used immature zygotic embryos as explants to induce somatic embryos, forming many embryogenic calli that differentiated into mature somatic embryos. Our results showed that somatic embryogenesis of C. camphora was similar to that of zygotic embryos. We have been dedifferentiated four types of callus. Compared with non-embryogenic cells, embryogenic cells had a closer arrangement, larger nucleus, thicker cytoplasm, more starch granules and easier to stain into black. Somatic embryogenesis had two pathways: direct (predominate) and indirect (rare). Embryogenic cells of C. camphora could have either an internal or external origin, the latter being primary, for which occurrence sites include epidermis and near-epidermis (little internally). Mostly arising from single cells, C. camphora follows two developmental pathways: single-cell equal as opposed to unequal, wherein both divide to form multi-cell proembryos. However, multicellular origins can occasionally occur and feature physiological isolation during somatic embryo development. This development has four embryo stages: globular, heart-shaped, torpedo, and cotyledon, with procambium cells apparent in globular embryos and late cotyledons forming “Y-shaped” vascular bundles. Secondary embryos were present in all stages, directly occurring on primary embryo’s germ and radicle end surfaces. We conclude that secondary and primary embryos of C. camphora undergo similar developmental processes. At the same time, conjoined cotyledon embryos and morphological abnormal embryos were found, with an internal origin more likely to generate abnormal embryos.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


2021 ◽  
Vol 12 ◽  
Author(s):  
Kamila Godel-Jędrychowska ◽  
Katarzyna Kulińska-Łukaszek ◽  
Ewa Kurczyńska

Intercellular signaling during embryo patterning is not well understood and the role of symplasmic communication has been poorly considered. The correlation between the symplasmic domains and the development of the embryo organs/tissues during zygotic embryogenesis has only been described for a few examples, including Arabidopsis. How this process occurs during the development of somatic embryos (SEs) is still unknown. The aim of these studies was to answer the question: do SEs have a restriction in symplasmic transport depending on the developmental stage that is similar to their zygotic counterparts? The studies included an analysis of the GFP distribution pattern as expressed under diverse promoters in zygotic embryos (ZEs) and SEs. The results of the GFP distribution in the ZEs and SEs showed that 1/the symplasmic domains between the embryo organs and tissues in the SEs was similar to those in the ZEs and 2/the restriction in symplasmic transport in the SEs was correlated with the developmental stage and was similar to the one in their zygotic counterparts, however, with the spatio-temporal differences and different PDs SEL value between these two types of embryos.


1994 ◽  
Vol 119 (3) ◽  
pp. 648-651 ◽  
Author(s):  
D.P.M. Wilson ◽  
J.A. Sullivan ◽  
A.A. Marsolais ◽  
M.J. Tsujita

The origin and development of somatic embryos from petiole sections of Regal geranium (Pelargonium ×domesticum Bailey `Madame Layal') were studied using time-series sections at days 0, 4, 8, 14, and 24. Somatic embryos originated as early as day 4 of culture. The proembryo stage resembled that of a zygotic embryo and the somatic embryos developed through the globular, heart-torpedo, and cotyledonous stages characteristic of in vivo zygotic embryogenesis. A suspensor-like structure was observed with some somatic embryos but this was not consistent. Strong evidence is presented to suggest that somatic embryos arose from single subepidermal parenchyma cells.


1991 ◽  
Vol 69 (9) ◽  
pp. 1873-1899 ◽  
Author(s):  
T. E. Tautorus ◽  
L. C. Fowke ◽  
D. I. Dunstan

Substantial progress has been made towards the development of systems for in vitro embryogenesis in conifers. Since the first report of somatic embryogenesis from zygotic embryos of Picea abies in 1985, cultured explants of at least 18 different coniferous species have been induced to produce somatic embryos. Somatic embryos have been cryopreserved, grown in liquid suspensions, and matured into plants. In addition, plantlets have been regenerated from protoplasts isolated from embryogenic suspensions of Picea glauca and Larix ×eurolepis, permitting studies into direct gene transfer and somatic hybridization. Currently however, it is only possible to obtain somatic embryogenesis from embryonic and juvenile explants. Furthermore, for most species the efficiency of plantlet production from somatic embryos is poor and remains a problem for the commercial utilization of this technology. Biochemical, cytological, and physiological studies of conifer somatic embryogenesis have resulted in improved knowledge concerning the origin of somatic embryos, storage product accumulation during embryo development, and similarities with zygotic embryos. Furthermore, the technique of indirect immunofluorescence microscopy has permitted investigations of the cytoskeleton in conifer cells and protoplasts, providing insights into cell division and morphogenesis. In this review, emphasis is placed on the more fundamental aspects of conifer somatic embryogenesis. Where possible, comparisons between zygotic and somatic embryogenesis are made. Key words: somatic embryogenesis, zygotic embryogenesis, conifers, review.


2013 ◽  
Vol 14 (1) ◽  
Author(s):  
Juwartina Ida Royani ◽  
Indah Sulistyorini ◽  
Dwi Rizkyanto Utomo

Somatic embryogenesis is a process whereby somatic cells have differentiation in somatic embryos and it’s formed from embryonic cells due to the high polarization of uncontrolled cell division. The aim of this research is to produced shoots of rodent tuber via somatic embryos.Induction of somatic embryos from explants in MS media with N (2-chloro-4-pyridyl)-Nphenyl urea (CPPU) and continuous subculture in MS media without plant growth regulator for 1 month. Plantlet regeneration growth in liquid MS media with BAP and IBA fortified with 40 gr/l of sucrose in the dark. The result showed that somatic embryonic appears in media induction after 2 week and plantlet regeneration in 4 week. All plantlet growed from embryosomatic can survive 100% in field with normal shoot.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 587c-587
Author(s):  
D.J. Gray ◽  
K.A. Labeau ◽  
C.M. Benton

The development of grape somatic embryos (Vitis vinifera cv. Thompson Seedless) was studied using high-resolution light microscopy and scanning electron microscopy. Somatic embryos develop either from discrete embryogenic cell clusters (indirect somatic embryogenesis) or from previously formed somatic embryos (direct somatic embryogenesis). In both instances, embryo development begins when a small, isodiametric, densely cytoplasmic cell undergoes a series of organized divisions, which are identical to those observed during zygotic embryogenesis. Developing embryos pass through recognizable embryonic stages, remaining white and opaque through maturity. Upon germination, embryos begin to enlarge, become yellow, then green, and develop into morphologically correct plants. The cells of somatic embryos contain little starch, but abundant storage proteins. However, lipids comprise the primary storage compound. Some developmental abnormalities occur during embryogenesis, including overly enlarged hypocotyls and fewer or more than two cotyledons. In addition, relatively few somatic embryos grow into plants primarily due to inadequate shoot apical meristem development. These abnormalities are best attributed to inadequacies of the in vitro environment of medium in a culture vessel when compared to the in vivo environment of a seed.


1970 ◽  
Vol 19 (1) ◽  
pp. 89-99
Author(s):  
K. Choudhary ◽  
M. Singh ◽  
M. S. Rathore ◽  
N. S. Shekhawat

This long term study demonstrates for the first time that it is possible to propagate embryogenic Vigna trilobata and to subsequently initiate the differentiation of embryos into complete plantlets. Initiation of callus was possible on 2,4-D. Somatic embryos differentiated on modified MS basal nutrient medium with 1.0 mg/l  of 2,4-D and 0.5 mg/l  of Kn. Sustained cell division resulted in globular and heart shape stages of somatic embryos. Transfer of embryos on to a fresh modified MS basal medium with 0.5 mg/l of Kn and 0.5 mg/l of GA3 helped them to attain maturation and germination. However, the propagation of cells, as well as the differentiation of embryos, were inhibited by a continuous application of these growth regulators. For this reason, a long period on medium lacking these growth regulators was necessary before the differentiation of embryos occurred again. The consequences for improving the propagation of embryogenic cultures in Vigna species are discussed. Key words: Pasture  legume, Vigna trilobata, Globular, Heart shape, somatic embryogenesis D.O.I. 10.3329/ptcb.v19i1.4990 Plant Tissue Cult. & Biotech. 19(1): 89-99, 2009 (June)


HortScience ◽  
1990 ◽  
Vol 25 (5) ◽  
pp. 573-576 ◽  
Author(s):  
I.E. Yates ◽  
C.C. Reilly

The influence of stage of fruit development and plant growth regulators on somatic embryogenesis and the relation of cultivar response on somatic embryogenesis and subsequent plant development have been investigated in eight cultivars of pecan [Carya illinoensis (Wangenh.) C. Koch]. Explants from the micropylar region of the ovule were more embryogenic when removed from fruits in the liquid endosperm stage than were intact ovules from less-mature fruits or from cotyledonary segments of more-mature fruits. Explants conditioned on medium containing auxin alone or auxin + cytokinin produced more somatic embryos than medium containing cytokinin alone. Under the conditions of this study, frequency of embryogenesis, as well as the germination of somatic embryos leading to plant development, indicated appreciable variation among cultivars. Plant development was greatest by far from somatic embryos of `Schley' than other cultivars studied.


Sign in / Sign up

Export Citation Format

Share Document