scholarly journals Histocytological Study of Somatic Embryogenesis in the Tree Cinnamomum camphora L. (Lauraceae)

2019 ◽  
Vol 47 (4) ◽  
pp. 1348-1358
Author(s):  
Ruyue JING ◽  
Peilan WANG ◽  
Zhen HUANG ◽  
Zhihui LI

Histocytological studies were conducted on primary, secondary, and malformed embryos produced during somatic embryogenesis of Cinnamomum camphora L. to better understand its development. Exploring its callus types and structures provided a theoretical basis for clarifying the mechanism of somatic embryogenesis, which may shed light on the mechanism of zygotic embryogenesis. We used immature zygotic embryos as explants to induce somatic embryos, forming many embryogenic calli that differentiated into mature somatic embryos. Our results showed that somatic embryogenesis of C. camphora was similar to that of zygotic embryos. We have been dedifferentiated four types of callus. Compared with non-embryogenic cells, embryogenic cells had a closer arrangement, larger nucleus, thicker cytoplasm, more starch granules and easier to stain into black. Somatic embryogenesis had two pathways: direct (predominate) and indirect (rare). Embryogenic cells of C. camphora could have either an internal or external origin, the latter being primary, for which occurrence sites include epidermis and near-epidermis (little internally). Mostly arising from single cells, C. camphora follows two developmental pathways: single-cell equal as opposed to unequal, wherein both divide to form multi-cell proembryos. However, multicellular origins can occasionally occur and feature physiological isolation during somatic embryo development. This development has four embryo stages: globular, heart-shaped, torpedo, and cotyledon, with procambium cells apparent in globular embryos and late cotyledons forming “Y-shaped” vascular bundles. Secondary embryos were present in all stages, directly occurring on primary embryo’s germ and radicle end surfaces. We conclude that secondary and primary embryos of C. camphora undergo similar developmental processes. At the same time, conjoined cotyledon embryos and morphological abnormal embryos were found, with an internal origin more likely to generate abnormal embryos.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 168
Author(s):  
Muhammad Ajmal Bashir ◽  
Cristian Silvestri ◽  
Amelia Salimonti ◽  
Eddo Rugini ◽  
Valerio Cristofori ◽  
...  

An efficient in vitro morphogenesis, specifically through somatic embryogenesis, is considered to be a crucial step for the application of modern biotechnological tools for genetic improvement in olive (Olea europaea L.). The effects of different ethylene inhibitors, i.e., cobalt chloride (CoCl2), salicylic acid (SA), and silver nitrate (AgNO3), were reported in the cyclic somatic embryogenesis of olive. Embryogenic callus derived from the olive immature zygotic embryos of the cultivar Leccino, was transferred to the expression ECO medium, supplemented with the ethylene inhibitors at 20 and 40 µM concentrations. Among these, the maximum number of somatic embryos (18.6) was obtained in media containing silver nitrate (40 µM), followed by cobalt chloride (12.2 somatic embryos @ 40 µM) and salicylic acid (40 µM), which produced 8.5 somatic embryos. These compounds interfered on callus traits: white friable embryogenic calli were formed in a medium supplemented with 40 µM cobalt chloride and salicylic acid; in addition, a yellow-compact embryogenic callus appeared at 20 µM of all the tested ethylene inhibitors. The resulting stimulatory action of silver nitrate among all the tested ethylene inhibitors on somatic embryogenesis, clearly demonstrates that our approach can efficiently contribute to the improvement of the current SE protocols for olive.


HortScience ◽  
2014 ◽  
Vol 49 (12) ◽  
pp. 1558-1562 ◽  
Author(s):  
Yuyu Wang ◽  
Faju Chen ◽  
Yubing Wang ◽  
Xiaoling Li ◽  
Hongwei Liang

High-frequency somatic embryogenesis and plant regeneration were achieved from immature cotyledonary-stage embryos in the endangered plant, Tapiscia sinensis Oliv. Plant growth regulators with different concentrations and combinations on embryogenesis capacity were studied. The optimal explants for in vitro somatic embryogenesis were immature embryos in T. sinensis. A high callus induction rate of 100% was achieved on Murashige and Skoog (MS) basal medium supplemented with 1.0 mg·Ll−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5% (w/v) activated charcoal. Alternatively, a high induction rate (96.16%) of somatic embryogenesis was obtained on MS basal medium supplemented with the combination of 0.05 mg·L−1 α-naphthaleneacetic acid (NAA) and 0.2 mg·L−1 6-benzylaminopurine (6-BA), and somatic embryos proliferated fastest on the mentioned medium supplemented with 0.5% (w/v) activated charcoal and 3% (w/v) sucrose, inoculation of explants proliferating 21 times in the 23-day subculture. Of the 100 plantlets transferred to field after the acclimation, 95 (95%) survived. Based on the histocytological observations, the development of somatic embryos was similar to that of zygotic embryos. There were two accumulation peaks of starch grains in the embryogenic calli and in the globular-stage embryos, both closely related to the energy supply, and the embryoids were of multicelluar origin.


Development ◽  
1997 ◽  
Vol 124 (10) ◽  
pp. 2049-2062 ◽  
Author(s):  
E.D. Schmidt ◽  
F. Guzzo ◽  
M.A. Toonen ◽  
S.C. de Vries

The first somatic single cells of carrot hypocotyl explants having the competence to form embryos in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D) were identified using semi-automatic cell tracking. These competent cells are present as a small subpopulation of enlarged and vacuolated cells derived from cytoplasm-rich and rapidly proliferating non-embryogenic cells that originate from the provascular elements of the hypocotyl. A search for marker genes to monitor the transition of somatic into competent and embryogenic cells in established suspension cell cultures resulted in the identification of a gene transiently expressed in a small subpopulation of the same enlarged single cells that are formed during the initiation of the embryogenic cultures from hypocotyl explants. The predicted amino acid sequence and in vitro kinase assays show that this gene encodes a leucine-rich repeat containing receptor-like kinase protein, designated Somatic Embryogenesis Receptor-like Kinase (SERK). Somatic embryos formed from cells expressing a SERK promoter-luciferase reporter gene. During somatic embryogenesis, SERK expression ceased after the globular stage. In plants, SERK mRNA could only be detected transiently in the zygotic embryo up to the early globular stage but not in unpollinated flowers nor in any other plant tissue. These results suggest that somatic cells competent to form embryos and early globular somatic embryos share a highly specific signal transduction chain with the zygotic embryo from shortly after fertilization to the early globular embryo.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Premananda Das

Somatic embryogenesis was achieved in four leguminous tree species, that is, Acacia catechu, Acacia arabica, Hardwickia binata, and Dalbergia sissoo using immature zygotic embryos as explants on Murashige and Skoog (MS) medium supplemented with 0.25–1.0 mg/l Kn (kinetin) and 2.0–3.0 mg/l 2,4-D (2,4-dichlorophenoxyacetic acid) or NAA (1-napthaleneacetic acid) and 3% sucrose. MS medium containing 2.0 mg/l 2,4-D and 1.0–1.5 mg/l Kn was noted to be most effective in inducing friable embryogenic callus (FEC); the number of somatic embryos per culture varied in MS medium supplemented with 1.0–2.0 mg/l 2,4-D or NAA and 0.25–1.5 mg/l kinetin. The maximum number of somatic embryos was obtained in MS medium containing 1.5–2.0 mg/l 2,4-D or NAA and 1.0–1.5 mg/l kinetin; proliferation of embryogenic calli was enhanced in cultures having 1.0–2.0 mg/l 2,4-D, 1.0–1.5 mg/l kinetin, and 400–600 mg/l L-Proline. The somatic embryos in various shapes and sizes after the first subculture on MS medium supplemented with 0.1 mg/l IAA and 0.25 mg/l BA; developed shoots and rooted in strength MS medium supplemented with 0.1 mg/l IBA or IAA. The somatic embryo-derived plantlets were transferred to the field after being hardened in the climate-controlled hardening chamber.


1991 ◽  
Vol 69 (9) ◽  
pp. 1873-1899 ◽  
Author(s):  
T. E. Tautorus ◽  
L. C. Fowke ◽  
D. I. Dunstan

Substantial progress has been made towards the development of systems for in vitro embryogenesis in conifers. Since the first report of somatic embryogenesis from zygotic embryos of Picea abies in 1985, cultured explants of at least 18 different coniferous species have been induced to produce somatic embryos. Somatic embryos have been cryopreserved, grown in liquid suspensions, and matured into plants. In addition, plantlets have been regenerated from protoplasts isolated from embryogenic suspensions of Picea glauca and Larix ×eurolepis, permitting studies into direct gene transfer and somatic hybridization. Currently however, it is only possible to obtain somatic embryogenesis from embryonic and juvenile explants. Furthermore, for most species the efficiency of plantlet production from somatic embryos is poor and remains a problem for the commercial utilization of this technology. Biochemical, cytological, and physiological studies of conifer somatic embryogenesis have resulted in improved knowledge concerning the origin of somatic embryos, storage product accumulation during embryo development, and similarities with zygotic embryos. Furthermore, the technique of indirect immunofluorescence microscopy has permitted investigations of the cytoskeleton in conifer cells and protoplasts, providing insights into cell division and morphogenesis. In this review, emphasis is placed on the more fundamental aspects of conifer somatic embryogenesis. Where possible, comparisons between zygotic and somatic embryogenesis are made. Key words: somatic embryogenesis, zygotic embryogenesis, conifers, review.


2014 ◽  
Vol 23 (2) ◽  
pp. 147-155 ◽  
Author(s):  
Dinesh Giri ◽  
Sushma Tamta

This protocol has been developed for somatic embryogenesis in Hedychium spicatum. Simultaneously, a method has also been developed for the production of synthetic seeds by using somatic embryos. Direct somatic embryos were developed on cotyledon explants of zygotic embryos on MS supplemented with high concentration of NAA (20.0 µM). Induction of secondary embryogenesis was best in 2,4-D supplemented medium fortified with activated charcoal. Germination of somatic embryos was enhanced by using GA3. Besides this, round and semi-hard beads of somatic embryos (synthetic seeds) could be produced by using 2% Na-alginate and 100 mM calcium chloride and more than 30% germination of synthetic seeds was achieved in MS. Well acclimated plants produced via somatic embryogenesis and/or synthetic seeds were transferred to field where more than 60% survived. This simple study enabled us to obtain a number of plantlets throughout the year each cycle requiring a short period of time. Besides propagation, this study provided an ex situ method for conservation of this vulnerable Himalayan species.D. O. I.http://dx.doi.org/10.3329/ptcb.v23i2.17506Plant Tissue Cult. & Biotech. 23(2): 147-155, 2013  (December)


2020 ◽  
Vol 29 (1) ◽  
pp. eSC05
Author(s):  
Ander Castander-Olarrieta ◽  
Paloma Moncaleán ◽  
Itziar A. Montalbán

Aim of the study: To develop an efficient method to regenerate plants through somatic embryogenesis of an ecologically relevant tree species such as Pinus canariensis.Area of study: The study was conducted in the research laboratories of Neiker-Tecnalia (Arkaute, Spain).Material and methods: Green cones of Pinus canariensis from two collection dates were processed and the resulting immature zygotic embryos were cultured on three basal media. The initiated embryogenic tissues were proliferated testing two subculture frequencies, and the obtained embryogenic cell lines were subjected to maturation. Germination of the produced somatic embryos was conducted and acclimatization was carried out in a greenhouse under controlled conditions.Main results: Actively proliferating embryogenic cell lines were obtained and well-formed somatic embryos that successfully germinated were acclimatized in the greenhouse showing a proper growth.Research highlights: This is the first report on Pinus canariensis somatic embryogenesis, opening the way for a powerful biotechnological tool for both research purposes and massive vegetative propagation of this species.Keywords: acclimatization; Canary Island pine; micropropagation; embryogenic tissue; somatic embryo.Abbreviations used: embryogenic tissue (ET); established cell line (ECL);  somatic embryogenesis (SE); somatic embryos (Se’s).


2015 ◽  
Vol 43 (3) ◽  
Author(s):  
K. Lakshmi Jayaraj ◽  
U. Bhavyashree ◽  
T.P. Fayas ◽  
K.K. Sajini ◽  
M.K. Rajesh ◽  
...  

<div><table cellspacing="0" cellpadding="0" align="center"><tbody><tr><td align="left" valign="top"><p>Since coconut is   one of the most recalcitrant species to generate <em>in vitro</em>, it is   necessary to study in detail about the cellular changes that occur during   somatic embryogenesis to enhance our knowledge about this phenomenon. In the   present study, coconut plumular tissues, the shoot meristem including leaf   primordia, were used as explants for <em>in vitro </em>regeneration studies.   Histological studies were carried out in different stages of plumule culture.   No noticeable growth was observed in 15 days old cultures. After 30 days,   meristematic cells could be identified. Abundance of meristematic cells,   foremost to the development of callus structures, was observed after 45 days.   After 75 days, globular friable calli were formed and histological studies   revealed the presence of meristematic centers which eventually formed somatic   embryos. The histological study of matured somatic embryos formed after 120   days of callus initiation showed a clear meristematic zone of parenchyma   cells, surrounded by vascular bundles. Histological studies, carried out for   certain abnormalities like compact calli, abnormal somatic embryoids with   rudimentary shoots and multiplied roots, revealed the presence of intact   cotyledonary leaves which seemed to inhibit the apical meristem development   of somatic embryoids. The presence of vascular bundles in the early stages of   callus formation might lead to the direct formation of meristemoids. These   results could aid future studies leading to enhanced control of the somatic   embryogenic process and greater efficiency of somatic embryo and plantlet   formation in coconut.</p></td></tr></tbody></table></div>


2019 ◽  
Author(s):  
Jordan Demone ◽  
Jingqin Mao ◽  
Shen Wan ◽  
Maryam Nourimand ◽  
Äsbjörn Erik Hansen ◽  
...  

AbstractThe ‘triple-blue’ cultivar of blue spruce (Picea pungens Hoopsii) is notably recalcitrant towards the realm of traditional vegetative propagation methods. Its ability to naturally proliferate is limited by ovule and embryo abortion during the growing season, leading to low viable seed yield. In this study, we established a protocol using somatic embryogenesis (SE) as a means of propagating this popular ornamental cultivar. We collected cones from Hoopsii trees at seven different timepoints throughout the growing season (mid-June to late July in Ottawa (Plant Hardiness Zone 5A)). Female megagametophytes were harvested following each collection and immature zygotic embryos were plated onto induction media. Early somatic embryos began developing from the embryonic tissue (ET) three to five weeks following induction. The highest ET initiation frequency occurred from embryos collected June 20–July 10, suggesting that developmental stage of the embryo was a significant factor in SE induction. The conversion of mature somatic embryos into plantlets (emblings) was completed in eight–ten weeks at a rate of 92.8%. In this study, we demonstrate that in vitro somatic embryogenesis using our optimized protocol is a fast and prolific method for the mass propagation of Hoopsii blue spruce. This is the first report on the production of somatic Hoopsii emblings.


Sign in / Sign up

Export Citation Format

Share Document