scholarly journals In vivo electrophysiological validation of DREADD-based inhibition of pallidal neurons in the non-human primate

2020 ◽  
Author(s):  
Marc Deffains ◽  
Tho Haï Nguyen ◽  
Hugues Orignac ◽  
Nathalie Biendon ◽  
Sandra Dovero ◽  
...  

AbstractDesigner Receptors Exclusively Activated by Designer Drugs (DREADDs) are widely used in rodents to manipulate neuronal activity and establish causal links between structure and function. Their utilization in non-human primates (NHPs) is however limited and their efficacy still debated. Here, we tested DREADD expression in the NHP external globus pallidus (GPe) and electrophysiologically validated DREADD-based inhibition of GPe neurons in the anesthetized monkey.To do so, we performed intracerebral injections of viral construct expressing hM4Di receptor under a neuron-specific promoter into the GPe. Then, we recorded the neuronal activity in the DREADD-transduced (test condition) and DREADD-free (control condition) GPe of two anesthetized animals following local intra-GPe microinjection of clozapine-N-oxide (CNO). In total, 19 and 8 well-isolated and stable units were recorded in the DREADD-transduced and DREADD-free GPe, respectively. Overall, we found that almost half (9/19) of the units modulated their activity following CNO injection in DREADD-transduced GPe. Surprisingly, neuronal activity of the GPe units exhibited diverse patterns in timing and polarity (increase/decrease) of firing rate modulations during and after CNO injection. Nevertheless, decreases were exclusive and stronger after CNO injection. In contrast, only one unit modulated its activity after CNO injection in DREADD-free GPe. Moreover, post-mortem histochemical analysis revealed that hM4Di DREADDs were expressed at high level in the GPe neurons located in the vicinity of the viral construct injection sites. Our results therefore show in vivo DREADD-based inhibition of pallidal neurons in the NHP model and reinforce the view that DREADD technology can be effective in NHPs.

2017 ◽  
Vol 17 (7) ◽  
pp. 53
Author(s):  
Sarah Walters ◽  
Christina Schwarz ◽  
Robin Sharma ◽  
William S. Fischer ◽  
David DiLoreto ◽  
...  

Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kristi Powers ◽  
Raymond Chang ◽  
Justin Torello ◽  
Rhonda Silva ◽  
Yannick Cadoret ◽  
...  

AbstractEchocardiography is a widely used and clinically translatable imaging modality for the evaluation of cardiac structure and function in preclinical drug discovery and development. Echocardiograms are among the first in vivo diagnostic tools utilized to evaluate the heart due to its relatively low cost, high throughput acquisition, and non-invasive nature; however lengthy manual image analysis, intra- and inter-operator variability, and subjective image analysis presents a challenge for reproducible data generation in preclinical research. To combat the image-processing bottleneck and address both variability and reproducibly challenges, we developed a semi-automated analysis algorithm workflow to analyze long- and short-axis murine left ventricle (LV) ultrasound images. The long-axis B-mode algorithm executes a script protocol that is trained using a reference library of 322 manually segmented LV ultrasound images. The short-axis script was engineered to analyze M-mode ultrasound images in a semi-automated fashion using a pixel intensity evaluation approach, allowing analysts to place two seed-points to triangulate the local maxima of LV wall boundary annotations. Blinded operator evaluation of the semi-automated analysis tool was performed and compared to the current manual segmentation methodology for testing inter- and intra-operator reproducibility at baseline and after a pharmacologic challenge. Comparisons between manual and semi-automatic derivation of LV ejection fraction resulted in a relative difference of 1% for long-axis (B-mode) images and 2.7% for short-axis (M-mode) images. Our semi-automatic workflow approach reduces image analysis time and subjective bias, as well as decreases inter- and intra-operator variability, thereby enhancing throughput and improving data quality for pre-clinical in vivo studies that incorporate cardiac structure and function endpoints.


2008 ◽  
Vol 74 (24) ◽  
pp. 7821-7823 ◽  
Author(s):  
Kai Linke ◽  
Nagarajan Periasamy ◽  
Matthias Ehrmann ◽  
Roland Winter ◽  
Rudi F. Vogel

ABSTRACT High hydrostatic pressure (HHP) is suggested to influence the structure and function of membranes and/or integrated proteins. We demonstrate for the first time HHP-induced dimer dissociation of membrane proteins in vivo with Vibrio cholerae ToxR variants in Escherichia coli reporter strains carrying ctx::lacZ fusions. Dimerization ceased at 20 to 50 MPa depending on the nature of the transmembrane segments rather than on changes in the ToxR lipid bilayer environment.


2001 ◽  
pp. 1-7 ◽  
Author(s):  
Joseph D. Fenstermacher ◽  
Tavarekere Nagaraja ◽  
Kenneth R. Davies

mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Jingwei Cai ◽  
Robert G. Nichols ◽  
Imhoi Koo ◽  
Zachary A. Kalikow ◽  
Limin Zhang ◽  
...  

ABSTRACTThe gut microbiota is susceptible to modulation by environmental stimuli and therefore can serve as a biological sensor. Recent evidence suggests that xenobiotics can disrupt the interaction between the microbiota and host. Here, we describe an approach that combinesin vitromicrobial incubation (isolated cecal contents from mice), flow cytometry, and mass spectrometry- and1H nuclear magnetic resonance (NMR)-based metabolomics to evaluate xenobiotic-induced microbial toxicity. Tempol, a stabilized free radical scavenger known to remodel the microbial community structure and functionin vivo, was studied to assess its direct effect on the gut microbiota. The microbiota was isolated from mouse cecum and was exposed to tempol for 4 h under strict anaerobic conditions. The flow cytometry data suggested that short-term tempol exposure to the microbiota is associated with disrupted membrane physiology as well as compromised metabolic activity. Mass spectrometry and NMR metabolomics revealed that tempol exposure significantly disrupted microbial metabolic activity, specifically indicated by changes in short-chain fatty acids, branched-chain amino acids, amino acids, nucleotides, glucose, and oligosaccharides. In addition, a mouse study with tempol (5 days gavage) showed similar microbial physiologic and metabolic changes, indicating that thein vitroapproach reflectedin vivoconditions. Our results, through evaluation of microbial viability, physiology, and metabolism and a comparison ofin vitroandin vivoexposures with tempol, suggest that physiologic and metabolic phenotyping can provide unique insight into gut microbiota toxicity.IMPORTANCEThe gut microbiota is modulated physiologically, compositionally, and metabolically by xenobiotics, potentially causing metabolic consequences to the host. We recently reported that tempol, a stabilized free radical nitroxide, can exert beneficial effects on the host through modulation of the microbiome community structure and function. Here, we investigated a multiplatform phenotyping approach that combines high-throughput global metabolomics with flow cytometry to evaluate the direct effect of tempol on the microbiota. This approach may be useful in deciphering how other xenobiotics directly influence the microbiota.


1849 ◽  
Vol 139 ◽  
pp. 109-137 ◽  

In venturing to offer a second communication to the Royal Society respecting the structure of the liver, I feel the rather anxious to do so, that I may have an opportunity of correcting an error and supplying a deficiency which existed in my previous paper. In the following observations I purpose to present some account of the structure of the liver examined in the ascending series of animals, and also to describe the several stages of its evolution in the embryo; in this way I trust I may be able to exhibit the characteristic structural features of the organ as it exists in Man and the higher animals, and also to determine the true place which ought to be assigned to it in a classification of the various glandular organs occurring in the same. I am not aware that any detailed account of the structure of the liver has been recently published, except that by M. Natalis Guillot, which however, so far as I comprehend it, does not seem to be one that can be readily accepted; the idea that the minute biliary ducts and lymphatics originate together in a common net-work, is à priori improbable, and entirely opposed to conclusive evidence (as I think), which will be subsequently adduced. A very interesting paper on the structure and function of the liver has also appeared in the 4th volume of the Guy’s Hospital Reports, from the pen of Dr. Williams; to his labours I shall several times have occasion to refer, but it will be seen that I differ from him in several particulars, especially respecting the importance of the basement or limitary membrane.


Sign in / Sign up

Export Citation Format

Share Document