scholarly journals Automatic building of protein atomic models from cryo-EM density maps using residue co-evolution

2020 ◽  
Author(s):  
Guillaume Bouvier ◽  
Benjamin Bardiaux ◽  
Riccardo Pellarin ◽  
Chiara Rapisarda ◽  
Michael Nilges

AbstractElectron cryo-microscopy (cryo-EM) has emerged as a powerful method to obtain three-dimensional (3D) structures of macromolecular complexes at atomic or near-atomic resolution. However, de novo building of atomic models from near-atomic resolution (3-5 Å) cryo-EM density maps is a challenging task, in particular since poorly resolved side-chain densities hamper sequence assignment by automatic procedures at a lower resolution. Furthermore, segmentation of EM density maps into individual subunits remains a difficult problem when no three-dimensional structures of these subunits exist, or when significant conformational changes occur between the isolated and complexed form of the subunits. To tackle these issues, we have developed a graph-based method to thread most of the C-α trace of the protein backbone into the EM density map. The EM density is described as a weighted graph such that the resulting minimum spanning tree encompasses the high-density regions of the map. A pruning algorithm cleans the tree and finds the most probable positions of the C-α atoms, using side-chain density when available, as a collection of C-α trace fragments. By complementing experimental EM maps with contact predictions from sequence co-evolutionary information, we demonstrate that our approach can correctly segment EM maps into individual subunits and assign amino acids sequence to backbone traces to generate full-atom models.

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Sergey Ovchinnikov ◽  
Lisa Kinch ◽  
Hahnbeom Park ◽  
Yuxing Liao ◽  
Jimin Pei ◽  
...  

The prediction of the structures of proteins without detectable sequence similarity to any protein of known structure remains an outstanding scientific challenge. Here we report significant progress in this area. We first describe de novo blind structure predictions of unprecendented accuracy we made for two proteins in large families in the recent CASP11 blind test of protein structure prediction methods by incorporating residue–residue co-evolution information in the Rosetta structure prediction program. We then describe the use of this method to generate structure models for 58 of the 121 large protein families in prokaryotes for which three-dimensional structures are not available. These models, which are posted online for public access, provide structural information for the over 400,000 proteins belonging to the 58 families and suggest hypotheses about mechanism for the subset for which the function is known, and hypotheses about function for the remainder.


2021 ◽  
Author(s):  
Caitlyn L. McCafferty ◽  
David W. Taylor ◽  
Edward M. Marcotte

AbstractElectron microscopy (EM) continues to provide near-atomic resolution structures for well-behaved proteins and protein complexes. Unfortunately, structures of some complexes are limited to low- to medium-resolution due to biochemical or conformational heterogeneity. Thus, the application of unbiased systematic methods for fitting individual structures into EM maps is important. A method that employs co-evolutionary information obtained solely from sequence data could prove invaluable for quick, confident localization of subunits within these structures. Here, we incorporate the co-evolution of intermolecular amino acids as a new type of distance restraint in the Integrative Modeling Platform (IMP) in order to build three-dimensional models of atomic structures into EM maps ranging from 10-14 Å in resolution. We validate this method using four complexes of known structure, where we highlight the conservation of intermolecular couplings despite dynamic conformational changes using the BAM complex. Finally, we use this method to assemble the subunits of the bacterial holo-translocon into a model that agrees with previous biochemical data. The use of evolutionary couplings in integrative modeling improves systematic, unbiased fitting of atomic models into medium- to low-resolution EM maps, providing additional information to integrative models lacking in spatial data.


2015 ◽  
Vol 48 (4) ◽  
pp. 1314-1323 ◽  
Author(s):  
Irene Farabella ◽  
Daven Vasishtan ◽  
Agnel Praveen Joseph ◽  
Arun Prasad Pandurangan ◽  
Harpal Sahota ◽  
...  

Three-dimensional electron microscopy is currently one of the most promising techniques used to study macromolecular assemblies. Rigid and flexible fitting of atomic models into density maps is often essential to gain further insights into the assemblies they represent. Currently, tools that facilitate the assessment of fitted atomic models and maps are needed.TEMPy(template and electron microscopy comparison using Python) is a toolkit designed for this purpose. The library includes a set of methods to assess density fits in intermediate-to-low resolution maps, both globally and locally. It also provides procedures for single-fit assessment, ensemble generation of fits, clustering, and multiple and consensus scoring, as well as plots and output files for visualization purposes to help the user in analysing rigid and flexible fits. The modular nature ofTEMPyhelps the integration of scoring and assessment of fits into large pipelines, making it a tool suitable for both novice and expert structural biologists.


2019 ◽  
Author(s):  
Philipp Mostosi ◽  
Hermann Schindelin ◽  
Philip Kollmannsberger ◽  
Andrea Thorn

AbstractIn recent years, three-dimensional density maps reconstructed from single particle images obtained by electron cryo-microscopy (Cryo-EM) have reached unprecedented resolution. However, map interpretation can be challenging, in particular if the constituting structures require de-novo model building or are very mobile. Here, we demonstrate the potential of convolutional neural networks for the annotation of Cryo-EM maps: our network Haruspex has been trained on a carefully curated set of 293 experimentally derived reconstruction maps to automatically annotate protein secondary structure elements as well as RNA/DNA. It can be straightforwardly applied to annotate newly reconstructed maps to support domain placement or to supply a starting point for main-chain placement. Due to its high recall and precision rates of 95.1% and 80.3%, respectively, on an independent test set of 122 maps, it can also be used for validation during model building. The trained network will be available as part of the CCP-EM suite.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
Amy M. McGough ◽  
Robert Josephs

The remarkable deformability of the erythrocyte derives in large part from the elastic properties of spectrin, the major component of the membrane skeleton. It is generally accepted that spectrin's elasticity arises from marked conformational changes which include variations in its overall length (1). In this work the structure of spectrin in partially expanded membrane skeletons was studied by electron microscopy to determine the molecular basis for spectrin's elastic properties. Spectrin molecules were analysed with respect to three features: length, conformation, and quaternary structure. The results of these studies lead to a model of how spectrin mediates the elastic deformation of the erythrocyte.Membrane skeletons were isolated from erythrocyte membrane ghosts, negatively stained, and examined by transmission electron microscopy (2). Particle lengths and end-to-end distances were measured from enlarged prints using the computer program MACMEASURE. Spectrin conformation (straightness) was assessed by calculating the particles’ correlation length by iterative approximation (3). Digitised spectrin images were correlation averaged or Fourier filtered to improve their signal-to-noise ratios. Three-dimensional reconstructions were performed using a suite of programs which were based on the filtered back-projection algorithm and executed on a cluster of Microvax 3200 workstations (4).


Sign in / Sign up

Export Citation Format

Share Document