scholarly journals MINREACT: an efficient algorithm for identifying minimal metabolic networks

2020 ◽  
Author(s):  
Gayathri Sambamoorthy ◽  
Karthik Raman

AbstractGenome-scale metabolic models are widely constructed and studied for understanding various design principles underlying metabolism, predominantly redundancy. Metabolic networks are highly redundant and it is possible to minimise the metabolic networks into smaller networks that retain the functionality of the original network. Here, we establish a new method, MinReact that systematically removes reactions from a given network to identify minimal reactome(s). We show that our method identifies smaller minimal reactomes than existing methods and also scales well to larger metabolic networks. Notably, our method exploits known aspects of network structure and redundancy to identify multiple minimal metabolic networks. We illustrate the utility of MinReact by identifying multiple minimal networks for 74 organisms from the BiGG database. We show that these multiple minimal reactomes arise due to the presence of compensatory reactions/pathways. We further employed MinReact for a case study to identify the minimal reactomes of different organisms in both glucose and xylose minimal environments. Identification of minimal reactomes of these different organisms elucidate that they exhibit varying levels of redundancy. A comparison of the minimal reactomes on glucose and xylose illustrate that the differences in the reactions required to sustain growth on either medium. Overall, our algorithm provides a rapid and reliable way to identify minimal subsets of reactions that are essential for survival, in a systematic manner.Author summaryAn organism’s metabolism is routinely modelled by a metabolic network, which consists of all the enzyme-catalysed reactions that occur in the organism. These reactions are numerous, majorly due to the presence of redundant reactions that perform compensatory functions. Also, not all the reactions are functional in all environments and are unique to the environmental conditions. So, it is possible to minimise such large metabolic networks into smaller functional networks. Such minimal networks help in easier dissection of the capabilities of the network and also further our understanding of the various redundancies and other design principles occurring in these networks. Here, we have developed a new algorithm for identification of such minimal networks, that is efficient and superior to existing algorithms. We show the utility of our algorithm in identifying such minimal sets of reactions for many known metabolic networks. We have also shown a case study, using our algorithm to identify such minimal networks for different organisms in varied nutrient conditions.

2020 ◽  
Vol 36 (15) ◽  
pp. 4309-4315
Author(s):  
Gayathri Sambamoorthy ◽  
Karthik Raman

Abstract Motivation Genome-scale metabolic models are widely constructed and studied for understanding various design principles underlying metabolism, predominantly redundancy. Metabolic networks are highly redundant and it is possible to minimize the metabolic networks into smaller networks that retain the functionality of the original network. Results Here, we establish a new method, MinReact that systematically removes reactions from a given network to identify minimal reactome(s). We show that our method identifies smaller minimal reactomes than existing methods and also scales well to larger metabolic networks. Notably, our method exploits known aspects of network structure and redundancy to identify multiple minimal metabolic networks. We illustrate the utility of MinReact by identifying multiple minimal networks for 77 organisms from the BiGG database. We show that these multiple minimal reactomes arise due to the presence of compensatory reactions/pathways. We further employed MinReact for a case study to identify the minimal reactomes of different organisms in both glucose and xylose minimal environments. Identification of minimal reactomes of these different organisms elucidate that they exhibit varying levels of redundancy. A comparison of the minimal reactomes on glucose and xylose illustrates that the differences in the reactions required to sustain growth on either medium. Overall, our algorithm provides a rapid and reliable way to identify minimal subsets of reactions that are essential for survival, in a systematic manner. Availability and implementation Algorithm is available from https://github.com/RamanLab/MinReact. Supplementary information Supplementary data are available at Bioinformatics online.


2014 ◽  
Vol 12 (05) ◽  
pp. 1450028 ◽  
Author(s):  
Abolfazl Rezvan ◽  
Sayed-Amir Marashi ◽  
Changiz Eslahchi

A metabolic network model provides a computational framework to study the metabolism of a cell at the system level. Due to their large sizes and complexity, rational decomposition of these networks into subsystems is a strategy to obtain better insight into the metabolic functions. Additionally, decomposing metabolic networks paves the way to use computational methods that will be otherwise very slow when run on the original genome-scale network. In the present study, we propose FCDECOMP decomposition method based on flux coupling relations (FCRs) between pairs of reaction fluxes. This approach utilizes a genetic algorithm (GA) to obtain subsystems that can be analyzed in isolation, i.e. without considering the reactions of the original network in the analysis. Therefore, we propose that our method is useful for discovering biologically meaningful modules in metabolic networks. As a case study, we show that when this method is applied to the metabolic networks of barley seeds and yeast, the modules are in good agreement with the biological compartments of these networks.


2016 ◽  
Vol 2 (1) ◽  
pp. 30 ◽  
Author(s):  
José Francisco Hidalgo ◽  
Francisco Guil ◽  
José Manuel García

Genome-scale metabolic networks let us understand the behaviour of the metabolism in the cells of living organisms. The availability of great amounts of such data gives the scientific community the opportunity to infer in silico new metabolic knowledge. Elementary Flux Modes (EFM) are minimal contained pathways or subsets of a metabolic network that are very useful to achieving the comprehension of a very specific metabolic function (as well as dysfunctions), and to get the knowledge to develop new drugs. Metabolic networks can have large connectivity and, therefore, EFMs resolution faces a combinational explosion challenge to be solved. In this paper we propose a new approach to obtain EFMs based on graph theory, the balanced graph concept and the shortest path between end nodes. Our proposal uses the shortest path between end nodes (input and output nodes) that finds all the pathways in the metabolic network and is able to prioritise the pathway search accounting the biological mean pursued. Our technique has two phases, the exploration phase and the characterisation one, and we show how it works in a well-known case study. We also demonstrate the relevance of the concept of balanced graph to achieve to the full list of EFMs.


2021 ◽  
Author(s):  
Vimaladhasan Senthamizhan ◽  
Sunanda Subramaniam ◽  
Arjun Raghavan ◽  
Karthik Raman

AbstractSummaryGenome-scale metabolic networks have been reconstructed for hundreds of organisms over the last two decades, with wide-ranging applications, including the identification of drug targets. Constraint-based approaches such as flux balance analysis have been effectively used to predict single and combinatorial drug targets in a variety of metabolic networks. We have previously developed Fast-SL, an efficient algorithm to rapidly enumerate all possible synthetic lethals from metabolic networks. Here, we introduce CASTLE, an online standalone database, which contains synthetic lethals predicted from the metabolic networks of over 130 organisms. These targets include single, double or triple lethal set of genes and reactions, and have been predicted using the Fast-SL algorithm. The workflow used for building CASTLE can be easily applied to other pathogenic models and used to identify novel therapeutic targets.AvailabilityCASTLE is available at https://ramanlab.github.io/CASTLE/[email protected]


FEBS Open Bio ◽  
2021 ◽  
Author(s):  
You‐Tyun Wang ◽  
Min‐Ru Lin ◽  
Wei‐Chen Chen ◽  
Wu‐Hsiung Wu ◽  
Feng‐Sheng Wang

2021 ◽  
Author(s):  
Ecehan Abdik ◽  
Tunahan Cakir

Genome-scale metabolic networks enable systemic investigation of metabolic alterations caused by diseases by providing interpretation of omics data. Although Mus musculus (mouse) is one of the most commonly used model...


2012 ◽  
Vol 13 (1) ◽  
Author(s):  
Abdelhalim Larhlimi ◽  
Laszlo David ◽  
Joachim Selbig ◽  
Alexander Bockmayr

2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
Kese Pontes Freitas Alberton ◽  
André Luís Alberton ◽  
Jimena Andrea Di Maggio ◽  
Vanina Gisela Estrada ◽  
María Soledad Díaz ◽  
...  

This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to overcome difficulties associated with lack of experimental data and large number of parameters, a common scenario in the modeling of such systems. As case study, the complex real problem of parameters identifiability of theEscherichia coliK-12 W3110 dynamic model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the procedure, model fit was improved for most of the measured metabolites, achieving 58 parameters estimated, including 5 unknown initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular metabolites and good initial estimates of parameters are not available.


2010 ◽  
Vol 4 (1) ◽  
pp. 114 ◽  
Author(s):  
Karin Radrich ◽  
Yoshimasa Tsuruoka ◽  
Paul Dobson ◽  
Albert Gevorgyan ◽  
Neil Swainston ◽  
...  

2017 ◽  
Vol 9 (10) ◽  
pp. 830-835 ◽  
Author(s):  
Xingxing Jian ◽  
Ningchuan Li ◽  
Qian Chen ◽  
Qiang Hua

Reconstruction and application of genome-scale metabolic models (GEMs) have facilitated metabolic engineering by providing a platform on which systematic computational analysis of metabolic networks can be performed.


Sign in / Sign up

Export Citation Format

Share Document