A new approach to obtaining EFMs using graph methods based on the shortest path between end nodes

2016 ◽  
Vol 2 (1) ◽  
pp. 30 ◽  
Author(s):  
José Francisco Hidalgo ◽  
Francisco Guil ◽  
José Manuel García

Genome-scale metabolic networks let us understand the behaviour of the metabolism in the cells of living organisms. The availability of great amounts of such data gives the scientific community the opportunity to infer in silico new metabolic knowledge. Elementary Flux Modes (EFM) are minimal contained pathways or subsets of a metabolic network that are very useful to achieving the comprehension of a very specific metabolic function (as well as dysfunctions), and to get the knowledge to develop new drugs. Metabolic networks can have large connectivity and, therefore, EFMs resolution faces a combinational explosion challenge to be solved. In this paper we propose a new approach to obtain EFMs based on graph theory, the balanced graph concept and the shortest path between end nodes. Our proposal uses the shortest path between end nodes (input and output nodes) that finds all the pathways in the metabolic network and is able to prioritise the pathway search accounting the biological mean pursued. Our technique has two phases, the exploration phase and the characterisation one, and we show how it works in a well-known case study. We also demonstrate the relevance of the concept of balanced graph to achieve to the full list of EFMs.

Parasitology ◽  
2010 ◽  
Vol 137 (9) ◽  
pp. 1393-1407 ◽  
Author(s):  
LUDOVIC COTTRET ◽  
FABIEN JOURDAN

SUMMARYRecently, a way was opened with the development of many mathematical methods to model and analyze genome-scale metabolic networks. Among them, methods based on graph models enable to us quickly perform large-scale analyses on large metabolic networks. However, it could be difficult for parasitologists to select the graph model and methods adapted to their biological questions. In this review, after briefly addressing the problem of the metabolic network reconstruction, we propose an overview of the graph-based approaches used in whole metabolic network analyses. Applications highlight the usefulness of this kind of approach in the field of parasitology, especially by suggesting metabolic targets for new drugs. Their development still represents a major challenge to fight against the numerous diseases caused by parasites.


2021 ◽  
Author(s):  
Ecehan Abdik ◽  
Tunahan Cakir

Genome-scale metabolic networks enable systemic investigation of metabolic alterations caused by diseases by providing interpretation of omics data. Although Mus musculus (mouse) is one of the most commonly used model...


2015 ◽  
Vol 32 (6) ◽  
pp. 867-874 ◽  
Author(s):  
Matthew B. Biggs ◽  
Jason A. Papin

Abstract Motivation: Most microbes on Earth have never been grown in a laboratory, and can only be studied through DNA sequences. Environmental DNA sequence samples are complex mixtures of fragments from many different species, often unknown. There is a pressing need for methods that can reliably reconstruct genomes from complex metagenomic samples in order to address questions in ecology, bioremediation, and human health. Results: We present the SOrting by NEtwork Completion (SONEC) approach for assigning reactions to incomplete metabolic networks based on a metabolite connectivity score. We successfully demonstrate proof of concept in a set of 100 genome-scale metabolic network reconstructions, and delineate the variables that impact reaction assignment accuracy. We further demonstrate the integration of SONEC with existing approaches (such as cross-sample scaffold abundance profile clustering) on a set of 94 metagenomic samples from the Human Microbiome Project. We show that not only does SONEC aid in reconstructing species-level genomes, but it also improves functional predictions made with the resulting metabolic networks. Availability and implementation: The datasets and code presented in this work are available at: https://bitbucket.org/mattbiggs/sorting_by_network_completion/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 26 (03) ◽  
pp. 373-397
Author(s):  
ZIXIANG XU ◽  
JING GUO ◽  
YUNXIA YUE ◽  
JING MENG ◽  
XIAO SUN

Microbial Fuel Cells (MFCs) are devices that generate electricity directly from organic compounds with microbes (electricigens) serving as anodic catalysts. As a novel environment-friendly energy source, MFCs have extensive practical value. Since the biological features and metabolic mechanism of electricigens have a great effect on the electricity production of MFCs, it is a big deal to screen strains with high electricity productivity for improving the power output of MFC. Reconstructions and simulations of metabolic networks are of significant help in studying the metabolism of microorganisms so as to guide gene engineering and metabolic engineering to improve their power-generating efficiency. Herein, we reconstructed a genome-scale constraint-based metabolic network model of Shewanella loihica PV-4, an important electricigen, based on its genomic functional annotations, reaction databases and published metabolic network models of seven microorganisms. The resulting network model iGX790 consists of 902 reactions (including 71 exchange reactions), 798 metabolites and 790 genes, covering the main pathways such as carbon metabolism, energy metabolism, amino acid metabolism, nucleic acid metabolism and lipid metabolism. Using the model, we simulated the growth rate, the maximal synthetic rate of ATP, the flux variability analysis of metabolic network, gene deletion and so on to examine the metabolism of S. loihica PV-4.


2021 ◽  
Author(s):  
Thomas James Moutinho ◽  
Benjamin C Neubert ◽  
Matthew L Jenior ◽  
Jason A. Papin

Genome-scale metabolic network reconstructions (GENREs) are valuable tools for understanding microbial community metabolism. The process of automatically generating GENREs includes identifying metabolic reactions supported by sufficient genomic evidence to generate a draft metabolic network. The draft GENRE is then gapfilled with additional reactions in order to recapitulate specific growth phenotypes as indicated with associated experimental data. Previous methods have implemented absolute mapping thresholds for the reactions automatically included in draft GENREs; however, there is growing evidence that integrating annotation evidence in a continuous form can improve model accuracy. There is a need for flexibility in the structure of GENREs to better account for uncertainty in biological data, unknown regulatory mechanisms, and context specificity associated with data inputs. To address this issue, we present a novel method that provides a framework for quantifying combined genomic, biochemical, and phenotypic evidence for each biochemical reaction during automated GENRE construction. Our method, Constraint-based Analysis Yielding reaction Usage across metabolic Networks (CANYUNs), generates accurate GENREs with a quantitative metric for the cumulative evidence for each reaction included in the network. The structure of a CANYUN GENRE allows for the simultaneous integration of three data inputs while maintaining all supporting evidence for biochemical reactions that may be active in an organism. CANYUNs is designed to maximize the utility of experimental and annotation datasets and to ultimately assist in the curation of the reference datasets used for the automatic reconstruction of metabolic networks. We validated CANYUNs by generating an E. coli K-12 model and compared it to the manually curated reconstruction iML1515. Finally, we demonstrated the use of CANYUNs to build a model by generating an E. coli Nissle CANYUN GENRE using novel phenotypic data that we collected. This method may address key challenges for the procedural construction of metabolic networks by leveraging uncertainty and redundancy in biological data.


2014 ◽  
Vol 12 (05) ◽  
pp. 1450028 ◽  
Author(s):  
Abolfazl Rezvan ◽  
Sayed-Amir Marashi ◽  
Changiz Eslahchi

A metabolic network model provides a computational framework to study the metabolism of a cell at the system level. Due to their large sizes and complexity, rational decomposition of these networks into subsystems is a strategy to obtain better insight into the metabolic functions. Additionally, decomposing metabolic networks paves the way to use computational methods that will be otherwise very slow when run on the original genome-scale network. In the present study, we propose FCDECOMP decomposition method based on flux coupling relations (FCRs) between pairs of reaction fluxes. This approach utilizes a genetic algorithm (GA) to obtain subsystems that can be analyzed in isolation, i.e. without considering the reactions of the original network in the analysis. Therefore, we propose that our method is useful for discovering biologically meaningful modules in metabolic networks. As a case study, we show that when this method is applied to the metabolic networks of barley seeds and yeast, the modules are in good agreement with the biological compartments of these networks.


2020 ◽  
Author(s):  
Gayathri Sambamoorthy ◽  
Karthik Raman

AbstractGenome-scale metabolic models are widely constructed and studied for understanding various design principles underlying metabolism, predominantly redundancy. Metabolic networks are highly redundant and it is possible to minimise the metabolic networks into smaller networks that retain the functionality of the original network. Here, we establish a new method, MinReact that systematically removes reactions from a given network to identify minimal reactome(s). We show that our method identifies smaller minimal reactomes than existing methods and also scales well to larger metabolic networks. Notably, our method exploits known aspects of network structure and redundancy to identify multiple minimal metabolic networks. We illustrate the utility of MinReact by identifying multiple minimal networks for 74 organisms from the BiGG database. We show that these multiple minimal reactomes arise due to the presence of compensatory reactions/pathways. We further employed MinReact for a case study to identify the minimal reactomes of different organisms in both glucose and xylose minimal environments. Identification of minimal reactomes of these different organisms elucidate that they exhibit varying levels of redundancy. A comparison of the minimal reactomes on glucose and xylose illustrate that the differences in the reactions required to sustain growth on either medium. Overall, our algorithm provides a rapid and reliable way to identify minimal subsets of reactions that are essential for survival, in a systematic manner.Author summaryAn organism’s metabolism is routinely modelled by a metabolic network, which consists of all the enzyme-catalysed reactions that occur in the organism. These reactions are numerous, majorly due to the presence of redundant reactions that perform compensatory functions. Also, not all the reactions are functional in all environments and are unique to the environmental conditions. So, it is possible to minimise such large metabolic networks into smaller functional networks. Such minimal networks help in easier dissection of the capabilities of the network and also further our understanding of the various redundancies and other design principles occurring in these networks. Here, we have developed a new algorithm for identification of such minimal networks, that is efficient and superior to existing algorithms. We show the utility of our algorithm in identifying such minimal sets of reactions for many known metabolic networks. We have also shown a case study, using our algorithm to identify such minimal networks for different organisms in varied nutrient conditions.


2019 ◽  
Author(s):  
Gregory L. Medlock ◽  
Jason A. Papin

AbstractUncertainty in the structure and parameters of networks is ubiquitous across computational biology. In constraint-based reconstruction and analysis of metabolic networks, this uncertainty is present both during the reconstruction of networks and in simulations performed with them. Here, we present Medusa, a Python package for the generation and analysis of ensembles of genome-scale metabolic network reconstructions. Medusa builds on the COBRApy package for constraint-based reconstruction and analysis by compressing a set of models into a compact ensemble object, providing functions for the generation of ensembles using experimental data, and extending constraint-based analyses to ensemble scale. We demonstrate how Medusa can be used to generate ensembles, perform ensemble simulations, and how machine learning can be used in conjunction with Medusa to guide the curation of genome-scale metabolic network reconstructions. Medusa is available under the permissive MIT license from the Python Packaging Index (https://pypi.org/) and from github (https://github.com/gregmedlock/Medusa/), and comprehensive documentation is available at https://medusa.readthedocs.io/en/latest/.


2018 ◽  
Author(s):  
Mojtaba Tefagh ◽  
Stephen P. Boyd

AbstractGenome-scale metabolic networks are exceptionally huge and even efficient algorithms can take a while to run because of the sheer size of the problem instances. To address this problem, metabolic network reductions can substantially reduce the overwhelming size of the problem instances at hand. We begin by formulating some reasonable axioms defining what it means for a metabolic network reduction to be “canonical” which conceptually enforces reversibility without loss of any information on the feasible flux distributions. Then, we start to search for an efficient way to deduce some of the attributes of the original network from the reduced one in order to improve the performance. As the next step, we will demonstrate how to reduce a metabolic network repeatedly until no more reductions are possible. In the end, we sum up by pointing out some of the biological implications of this study apart from the computational aspects discussed earlier.Author summaryMetabolic networks appear at first sight to be nothing more than an enormous body of reactions. The dynamics of each reaction obey the same fundamental laws and a metabolic network as a whole is the melange of its reactions. The oversight in this kind of reductionist thinking is that although the behavior of a metabolic network is determined by the states of its reactions in theory, nevertheless it cannot be inferred directly from them in practice. Apart from the infeasibility of this viewpoint, metabolic pathways are what explain the biological functions of the organism and thus also what we are frequently concerned about at the system level.Canonical metabolic network reductions decrease the number of reactions substantially despite leaving the metabolic pathways intact. In other words, the reduced metabolic networks are smaller in size while retaining the same metabolic pathways. The possibility of such operations is rooted in the fact that the total degrees of freedom of a metabolic network in the steady-state conditions are significantly lower than the number of its reactions because of some emergent redundancies. Strangely enough, these redundancies turn out to be very well-studied in the literature.


2020 ◽  
Author(s):  
Takeyuki Tamura

Abstract BackgroundMetabolic engineering strategies enabling the production of specific target metabolites by host strains can be identified in silico through the use of metabolic network analysis such as flux balance analysis. This type of metabolic redesign is based on the computation of reactions that should be deleted from the original network representing the metabolism of the host strain to enable the production of the target metabolites while still ensuring its growth (the concept of growth coupling). In this context, it is important to use algorithms that enable this growth-coupled reaction deletions identification for any metabolic network topologies and any potential target metabolites. A recent method using a strong growth coupling assumption has been shown to be able to identify such computational redesign for nearly all metabolites included in the genome-scale metabolic models of Escherichia coli and Saccharomyces cerevisiae when cultivated under aerobic conditions. However, this approach enables the computational redesign of S. cerevisiae for only 3.9% of all metabolites if under anaerobic conditions. Therefore, it is necessary to develop algorithms able to perform for various culture conditions.ResultsThe author developed an algorithm that could calculate the reaction deletions that achieve the coupling of growth and production for 91.3% metabolites in genome-scale models of S. cerevisiae under anaerobic conditions. Computational experiments showed that the proposed algorithm is efficient also for aerobic conditions and Escherichia coli. In these analyses, the least target production rates were evaluated using flux variability analysis when multiple fluxes yield the highest growth rate. To demonstrate the feasibility of the coupling, the author derived appropriate reaction deletions using the new algorithm for target production in which the search space was divided into small cubes (CubeProd).ConclusionsThe author developed a novel algorithm, CubeProd, to demonstrate that growth coupling is possible for most metabolites in S.cerevisiae under anaerobic conditions. This may imply that growth coupling is possible by reaction deletions for most target metabolites in any genome-scale constraint-based metabolic networks. The developed software, CubeProd, implemented in MATLAB, and the obtained reaction deletion strategies are freely available.


Sign in / Sign up

Export Citation Format

Share Document