scholarly journals General DNA methylation patterns and environmentally-induced differential methylation in the eastern oyster (Crassostrea virginica)

Author(s):  
Yaamini R. Venkataraman ◽  
Alan M. Downey-Wall ◽  
Justin Ries ◽  
Isaac Westfield ◽  
Samuel J. White ◽  
...  

AbstractEpigenetic modification, specifically DNA methylation, is one possible mechanism for intergenerational plasticity. Before inheritance of methylation patterns can be characterized, we need a better understanding of how environmental change modifies the parental epigenome. To examine the influence of experimental ocean acidification on eastern oyster (Crassostrea virginica) gonad tissue, oysters were cultured in the laboratory under control (491 ± 49 μatm) or high (2550 ± 211 μatm) pCO2 conditions for four weeks. DNA from reproductive tissue was isolated from five oysters per treatment, then subjected to bisulfite treatment and DNA sequencing. Irrespective of treatment, DNA methylation was primarily found in gene bodies with approximately 22% of CpGs (2.7% of total cytosines) in the C. virginica genome predicted to be methylated. In response to elevated pCO2, we found 598 differentially methylated loci primarily overlapping with gene bodies. A majority of differentially methylated loci were in exons (61.5%) with less intron overlap (31.9%). While there was no evidence of a significant tendency for the genes with differentially methylated loci to be associated with distinct biological processes, the concentration of these loci in gene bodies, including genes involved in protein ubiquitination and biomineralization suggests DNA methylation may be important for transcriptional control in response to ocean acidification. Changes in gonad methylation also indicate potential for these methylation patterns to be inherited by offspring. Understanding how experimental ocean acidification conditions modify the oyster epigenome, and if these modifications are inherited, allows for a better understanding of how ecosystems will respond to environmental change.

2020 ◽  
Vol 7 ◽  
Author(s):  
Alan M. Downey-Wall ◽  
Louise P. Cameron ◽  
Brett M. Ford ◽  
Elise M. McNally ◽  
Yaamini R. Venkataraman ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Yaamini R. Venkataraman ◽  
Alan M. Downey-Wall ◽  
Justin Ries ◽  
Isaac Westfield ◽  
Samuel J. White ◽  
...  

2007 ◽  
Vol 30 (4) ◽  
pp. 90
Author(s):  
Kirsten Niles ◽  
Sophie La Salle ◽  
Christopher Oakes ◽  
Jacquetta Trasler

Background: DNA methylation is an epigenetic modification involved in gene expression, genome stability, and genomic imprinting. In the male, methylation patterns are initially erased in primordial germ cells (PGCs) as they enter the gonadal ridge; methylation patterns are then acquired on CpG dinucleotides during gametogenesis. Correct pattern establishment is essential for normal spermatogenesis. To date, the characterization and timing of methylation pattern acquisition in PGCs has been described using a limited number of specific gene loci. This study aimed to describe DNA methylation pattern establishment dynamics during male gametogenesis through global methylation profiling techniques in a mouse model. Methods: Using a chromosome based approach, primers were designed for 24 regions spanning chromosome 9; intergenic, non-repeat, non-CpG island sequences were chosen for study based on previous evidence that these types of sequences are targets for testis-specific methylation events. The percent methylation was determined in each region by quantitative analysis of DNA methylation using real-time PCR (qAMP). The germ cell-specific pattern was determined by comparing methylation between spermatozoa and liver. To examine methylation in developing germ cells, spermatogonia from 2 day- and 6 day-old Oct4-GFP (green fluorescent protein) mice were isolated using fluorescence activated cell sorting. Results: As compared to liver, four loci were hypomethylated and five loci were hypermethylated in spermatozoa, supporting previous results indicating a unique methylation pattern in male germ cells. Only one region was hypomethylated and no regions were hypermethylated in day 6 spermatogonia as compared to mature spermatozoa, signifying that the bulk of DNA methylation is established prior to type A spermatogonia. The methylation in day 2 spermatogonia, germ cells that are just commencing mitosis, revealed differences of 15-20% compared to day 6 spermatogonia at five regions indicating that the most crucial phase of DNA methylation acquisition occurs prenatally. Conclusion: Together, these studies provide further evidence that germ cell methylation patterns differ from those in somatic tissues and suggest that much of methylation at intergenic sites is acquired during prenatal germ cell development. (Supported by CIHR)


2015 ◽  
Author(s):  
Irene Hernando-Herraez ◽  
Holger Heyn ◽  
Marcos Fernandez-Callejo ◽  
Enrique Vidal ◽  
Hugo Fernandez-Bellon ◽  
...  

DNA methylation is a key regulatory mechanism in mammalian genomes. Despite the increasing knowledge about this epigenetic modification, the understanding of human epigenome evolution is in its infancy. We used whole genome bisulfite sequencing to study DNA methylation and nucleotide divergence between human and great apes. We identified 360 and 210 differentially hypo- and hypermethylated regions (DMRs) in humans compared to non-human primates and estimated that 20% and 36% of these regions, respectively, were detectable throughout several human tissues. Human DMRs were enriched for specific histone modifications and contrary to expectations, the majority were located distal to transcription start sites, highlighting the importance of regions outside the direct regulatory context. We also found a significant excess of endogenous retrovirus elements in human-specific hypomethylated regions suggesting their association with local epigenetic changes. We also reported for the first time a close interplay between inter-species genetic and epigenetic variation in regions of incomplete lineage sorting, transcription factor binding sites and human differentially hypermethylated regions. Specifically, we observed an excess of human-specific substitutions in transcription factor binding sites located within human DMRs, suggesting that alteration of regulatory motifs underlies some human-specific methylation patterns. We also found that the acquisition of DNA hypermethylation in the human lineage is frequently coupled with a rapid evolution at nucleotide level in the neighborhood of these CpG sites. Taken together, our results reveal new insights into the mechanistic basis of human-specific DNA methylation patterns and the interpretation of inter-species non-coding variation.


2019 ◽  
Author(s):  
Luis Busto-Moner ◽  
Julien Morival ◽  
Arjang Fahim ◽  
Zachary Reitz ◽  
Timothy L. Downing ◽  
...  

AbstractDNA methylation is a heritable epigenetic modification that plays an essential role in mammalian development. Genomic methylation patterns are dynamically maintained, with DNA methyltransferases mediating inheritance of methyl marks onto nascent DNA over cycles of replication. A recently developed experimental technique employing immunoprecipitation of bromodeoxyuridine labeled nascent DNA followed by bisulfite sequencing (Repli-BS) measures post-replication temporal evolution of cytosine methylation, thus enabling genome-wide monitoring of methylation maintenance. In this work, we combine statistical analysis and stochastic mathematical modeling to analyze Repli-BS data from human embryonic stem cells. We estimate site-specific kinetic rate constants for the restoration of methyl marks on >10 million uniquely mapped cytosines within the CpG (cytosine-phosphate-guanine) dinucleotide context across the genome using Maximum Likelihood Estimation. We find that post-replication remethylation rate constants span approximately two orders of magnitude, with half-lives of per-site recovery of steady-state methylation levels ranging from shorter than ten minutes to five hours and longer. Furthermore, we find that kinetic constants of maintenance methylation are correlated among neighboring CpG sites. Stochastic mathematical modeling provides insight to the biological mechanisms underlying the inference results, suggesting that enzyme processivity and/or collaboration can produce the observed kinetic correlations. Our combined statistical/mathematical modeling approach expands the utility of genomic datasets and disentangles heterogeneity in methylation patterns arising from replication-associated temporal dynamics versus stable cell-to-cell differences.


2018 ◽  
Vol 19 (7) ◽  
pp. 2144 ◽  
Author(s):  
Arthur Bartels ◽  
Qiang Han ◽  
Pooja Nair ◽  
Liam Stacey ◽  
Hannah Gaynier ◽  
...  

DNA methylation is an epigenetic modification required for transposable element (TE) silencing, genome stability, and genomic imprinting. Although DNA methylation has been intensively studied, the dynamic nature of methylation among different species has just begun to be understood. Here we summarize the recent progress in research on the wide variation of DNA methylation in different plants, organs, tissues, and cells; dynamic changes of methylation are also reported during plant growth and development as well as changes in response to environmental stresses. Overall DNA methylation is quite diverse among species, and it occurs in CG, CHG, and CHH (H = A, C, or T) contexts of genes and TEs in angiosperms. Moderately expressed genes are most likely methylated in gene bodies. Methylation levels decrease significantly just upstream of the transcription start site and around transcription termination sites; its levels in the promoter are inversely correlated with the expression of some genes in plants. Methylation can be altered by different environmental stimuli such as pathogens and abiotic stresses. It is likely that methylation existed in the common eukaryotic ancestor before fungi, plants and animals diverged during evolution. In summary, DNA methylation patterns in angiosperms are complex, dynamic, and an integral part of genome diversity after millions of years of evolution.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2004 ◽  
Author(s):  
Terisha Ghazi ◽  
Thilona Arumugam ◽  
Ashmika Foolchand ◽  
Anil A. Chuturgoon

Cancer initiation and progression is an accumulation of genetic and epigenetic modifications. DNA methylation is a common epigenetic modification that regulates gene expression, and aberrant DNA methylation patterns are considered a hallmark of cancer. The human diet is a source of micronutrients, bioactive molecules, and mycotoxins that have the ability to alter DNA methylation patterns and are thus a contributing factor for both the prevention and onset of cancer. Micronutrients such as betaine, choline, folate, and methionine serve as cofactors or methyl donors for one-carbon metabolism and other DNA methylation reactions. Dietary bioactive compounds such as curcumin, epigallocatechin-3-gallate, genistein, quercetin, resveratrol, and sulforaphane reactivate essential tumor suppressor genes by reversing aberrant DNA methylation patterns, and therefore, they have shown potential against various cancers. In contrast, fungi-contaminated agricultural foods are a source of potent mycotoxins that induce carcinogenesis. In this review, we summarize the existing literature on dietary micronutrients, bioactive compounds, and food-borne mycotoxins that affect DNA methylation patterns and identify their potential in the onset and treatment of cancer.


2017 ◽  
Vol 186 ◽  
pp. 196-204 ◽  
Author(s):  
Rodrigo Gonzalez-Romero ◽  
Victoria Suarez-Ulloa ◽  
Javier Rodriguez-Casariego ◽  
Daniel Garcia-Souto ◽  
Gabriel Diaz ◽  
...  

2003 ◽  
Vol 81 (3) ◽  
pp. 197-208 ◽  
Author(s):  
Giuseppe Zardo ◽  
Anna Reale ◽  
Giovanna De Matteis ◽  
Serena Buontempo ◽  
Paola Caiafa

The aberrant DNA methylation of promoter regions of housekeeping genes leads to gene silencing. Additional epigenetic events, such as histone methylation and acetylation, also play a very important role in the definitive repression of gene expression by DNA methylation. If the aberrant DNA methylation of promoter regions is the starting or the secondary event leading to the gene silencing is still debated. Mechanisms controlling DNA methylation patterns do exist although they have not been ultimately proven. Our data suggest that poly(ADP-ribosyl)ation might be part of this control mechanism. Thus an additional epigenetic modification seems to be involved in maintaining tissue and cell-type methylation patterns that when formed during embryo development, have to be rigorously conserved in adult organisms.Key words: DNA methylation, chromatin, poly(ADP-ribosyl)ation.


2019 ◽  
Author(s):  
Nikhil Jain ◽  
Tamar Shahal ◽  
Tslil Gabrieli ◽  
Noa Gilat ◽  
Dmitry Torchinsky ◽  
...  

AbstractDNA methylation patterns create distinct gene expression profiles. These patterns are maintained after cell division, thus enabling the differentiation and maintenance of multiple cell types from the same genome sequence. The advantage of this mechanism for transcriptional control is that chemical-encoding allows to rapidly establish new epigenetic patterns “on-demand” through enzymatic methylation and de-methylation of DNA. Here we show that this feature is associated with the fast response of macrophages during their pro-inflammatory activation. By using a combination of mass spectroscopy and single-molecule imaging to quantify global epigenetic changes in the genomes of primary macrophages, we followed three distinct DNA marks (methylated, hydroxymethylated and unmethylated), involved in establishing new DNA methylation patterns during pro-inflammatory activation. The observed epigenetic modulation together with gene expression data generated for the involved enzymatic machinery, may suggest that de-methylation upon LPS-activation starts with oxidation of methylated CpGs, followed by excision-repair of these oxidized bases and their replacement with unmodified cytosine.


Sign in / Sign up

Export Citation Format

Share Document