scholarly journals The first eukaryotic kinome tree illuminates the dynamic history of present-day kinases

Author(s):  
Leny M. van Wijk ◽  
Berend Snel

AbstractEukaryotic Protein Kinases (ePKs) are essential for eukaryotic cell signalling. Several phylogenetic trees of the ePK repertoire of single eukaryotes have been published, including the human kinome tree. However, a eukaryote-wide kinome tree was missing due to the large number of kinases in eukaryotes. Using a pipeline that overcomes this problem, we present here the first eukaryotic kinome tree. The tree reveals that the Last Eukaryotic Common Ancestor (LECA) possessed at least 92 ePKs, much more than previously thought. The retention of these LECA ePKs in present-day species is highly variable. Fourteen human kinases with unresolved placement in the human kinome tree were found to originate from three known ePK superfamilies. Further analysis of ePK superfamilies shows that they exhibit markedly diverse evolutionary dynamics between the LECA and present-day eukaryotes. The eukaryotic kinome tree thus unveils the evolutionary history of ePKs, but the tree also enables the transfer of functional information between related kinases.

Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1165
Author(s):  
Thomaz Stumpf Trenz ◽  
Camila Luiza Delaix ◽  
Andreia Carina Turchetto-Zolet ◽  
Marcel Zamocky ◽  
Fernanda Lazzarotto ◽  
...  

There is large diversity among glutathione peroxidase (GPx) enzymes regarding their function, structure, presence of the highly reactive selenocysteine (SeCys) residue, substrate usage, and reducing agent preference. Moreover, most vertebrate GPxs are very distinct from non-animal GPxs, and it is still unclear if they came from a common GPx ancestor. In this study, we aimed to unveil how GPx evolved throughout different phyla. Based on our phylogenetic trees and sequence analyses, we propose that all GPx encoding genes share a monomeric common ancestor and that the SeCys amino acid was incorporated early in the evolution of the metazoan kingdom. In addition, classical GPx and the cysteine-exclusive GPx07 have been present since non-bilaterian animals, but they seem to have been lost throughout evolution in different phyla. Therefore, the birth-and-death of GPx family members (like in other oxidoreductase families) seems to be an ongoing process, occurring independently across different kingdoms and phyla.


2021 ◽  
Author(s):  
Celestine N Chi ◽  
Ravi Teja Inturi ◽  
Sandra Martinez Lara ◽  
Mahmoud Darweesh

The emergence of the first eukaryotic cell was preceded by evolutionary events which are still highly debatable. Recently, comprehensive metagenomics analysis has uncovered that the Asgard super-phylum is the closest yet known archaea host of eukaryotes. However, it remains to be established if a large number of eukaryotic signature proteins predicated to be encoded by the Asgard super-phylum are functional at least, in the context of a eukaryotic cell. Here, we determined the three-dimensional structure of profilin from Thorarchaeota by nuclear magnetic resonance spectroscopy and show that this profilin has a rigid core with a flexible N-terminus which was previously implicated in polyproline binding. In addition, we also show that thorProfilin co-localizes with eukaryotic actin in cultured HeLa cells. This finding reaffirm the notion that Asgardean encoded proteins possess eukaryotic-like characteristics and strengthen likely existence of a complex cytoskeleton already in a last eukaryotic common ancestor


2019 ◽  
Author(s):  
Laura Hernández ◽  
Alberto Vicens ◽  
Luis Enrique Eguiarte ◽  
Valeria Souza ◽  
Valerie De Anda ◽  
...  

ABSTRACTDimethylsulfoniopropionate (DMSP), an osmolyte produced by oceanic phytoplankton, is predominantly degraded by bacteria belonging to the Roseobacter lineage and other marine Alphaproteobacteria via DMSP-dependent demethylase A protein (DmdA). To date, the evolutionary history of DmdA gene family is unclear. Some studies indicate a common ancestry between DmdA and GcvT gene families and a co-evolution between Roseobacter and the DMSP-producing-phytoplankton around 250 million years ago (Mya). In this work, we analyzed the evolution of DmdA under three possible evolutionary scenarios: 1) a recent common ancestor of DmdA and GcvT, 2) a coevolution between Roseobacter and the DMSP-producing-phytoplankton, and 3) pre-adapted enzymes to DMSP prior to Roseobacter origin. Our analyses indicate that DmdA is a new gene family originated from GcvT genes by duplication and functional divergence driven by positive selection before a coevolution between Roseobacter and phytoplankton. Our data suggest that Roseobacter acquired dmdA by horizontal gene transfer prior to exposition to an environment with higher DMSP. Here, we propose that the ancestor that carried the DMSP demethylation pathway genes evolved in the Archean, and was exposed to a higher concentration of DMSP in a sulfur rich atmosphere and anoxic ocean, compared to recent Roseobacter ecoparalogs (copies performing the same function under different conditions), which should be adapted to lower concentrations of DMSP.


2006 ◽  
Vol 04 (01) ◽  
pp. 59-74 ◽  
Author(s):  
YING-JUN HE ◽  
TRINH N. D. HUYNH ◽  
JESPER JANSSON ◽  
WING-KIN SUNG

To construct a phylogenetic tree or phylogenetic network for describing the evolutionary history of a set of species is a well-studied problem in computational biology. One previously proposed method to infer a phylogenetic tree/network for a large set of species is by merging a collection of known smaller phylogenetic trees on overlapping sets of species so that no (or as little as possible) branching information is lost. However, little work has been done so far on inferring a phylogenetic tree/network from a specified set of trees when in addition, certain evolutionary relationships among the species are known to be highly unlikely. In this paper, we consider the problem of constructing a phylogenetic tree/network which is consistent with all of the rooted triplets in a given set [Formula: see text] and none of the rooted triplets in another given set [Formula: see text]. Although NP-hard in the general case, we provide some efficient exact and approximation algorithms for a number of biologically meaningful variants of the problem.


2009 ◽  
Vol 75 (16) ◽  
pp. 5410-5416 ◽  
Author(s):  
Gabriele Margos ◽  
Stephanie A. Vollmer ◽  
Muriel Cornet ◽  
Martine Garnier ◽  
Volker Fingerle ◽  
...  

ABSTRACT Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.


Author(s):  
Francisco Prosdocimi ◽  
Sávio Torres de Farias

Genes and gene trees have been extensively used to study the evolutionary relationships among populations, species, families and higher systematic clades of organisms. This brought modern Biology into a sophisticated level of understanding about the evolutionary relationships and diversification patterns that happened along the entire history of organismal evolution in Earth. Genes however have not been placed in the center of questions when one aims to unravel the evolutionary history of genes themselves. Thus, we still ignore whether Insulin share a more recent common ancestor to Hexokinase or DNA polymerase. This brought modern Genetics into a very poor level of understanding about sister group relationships that happened along the entire evolutionary history of genes. Many conceptual challenges must be overcome to allow this broader comprehension about gene evolution. Here we aim to clear the intellectual path in order to provide a fertile research program that will help geneticists to understand the deep ancestry and sister group relationships among different gene families (or orthologs). We aim to propose methods to study gene formation starting from the establishment of the genetic code in pre-cellular organisms like the FUCA (First Universal Common Ancestor) until the formation of the highly complex genome of LUCA (Last UCA), that harbors hundreds of genes families working coordinated into a cellular organism. The deep understanding of ancestral relationships among orthologs will certainly inspire biotechnological and biomedical approaches and allow a deep understanding about how Darwinian molecular evolution operates inside cells and before the appearance of cellular organisms.


Author(s):  
Laura M. Carroll ◽  
Martin Wiedmann

AbstractCereulide-producing members of Bacillus cereus sensu lato (B. cereus s.l.) Group III, also known as “emetic B. cereus”, possess cereulide synthetase, a plasmid-encoded, non-ribosomal peptide synthetase encoded by the ces gene cluster. Despite the documented risks that cereulide-producing strains pose to public health, the level of genomic diversity encompassed by “emetic B. cereus” has never been evaluated at a whole-genome scale. Here, we employ a phylogenomic approach to characterize Group III B. cereus s.l. genomes which possess ces (ces-positive) alongside their closely related ces-negative counterparts to (i) assess the genomic diversity encompassed by “emetic B. cereus”, and (ii) identify potential ces loss and/or gain events within the evolutionary history of the high-risk and medically relevant sequence type (ST) 26 lineage often associated with emetic foodborne illness. Using all publicly available ces-positive Group III B. cereus s.l. genomes and the ces-negative genomes interspersed among them (n = 150), we show that “emetic B. cereus” is not clonal; rather, multiple lineages within Group III harbor cereulide-producing strains, all of which share a common ancestor incapable of producing cereulide (posterior probability [PP] 0.86-0.89). The ST 26 common ancestor was predicted to have emerged as ces-negative (PP 0.60-0.93) circa 1904 (95% highest posterior density [HPD] interval 1837.1-1957.8) and first acquired the ability to produce cereulide before 1931 (95% HPD 1893.2-1959.0). Three subsequent ces loss events within ST 26 were observed, including among isolates responsible for B. cereus s.l. toxicoinfection (i.e., “diarrheal” illness).Importance“B. cereus” is responsible for thousands of cases of foodborne disease each year worldwide, causing two distinct forms of illness: (i) intoxication via cereulide (i.e., “emetic” syndrome) or (ii) toxicoinfection via multiple enterotoxins (i.e., “diarrheal” syndrome). Here, we show that “emetic B. cereus” is not a clonal, homogenous unit that resulted from a single cereulide synthetase gain event followed by subsequent proliferation; rather, cereulide synthetase acquisition and loss is a dynamic, ongoing process that occurs across lineages, allowing some Group III B. cereus s.l. populations to oscillate between diarrheal and emetic foodborne pathogen over the course of their evolutionary histories. We also highlight the care that must be taken when selecting a reference genome for whole-genome sequencing-based investigation of emetic B. cereus s.l. outbreaks, as some reference genome selections can lead to a confounding loss of resolution and potentially hinder epidemiological investigations.


2020 ◽  
Author(s):  
Yuji Matsuo ◽  
Akinao Nose ◽  
Hiroshi Kohsaka

AbstractSpeed and trajectory of locomotion are characteristic traits of individual species. During evolution, locomotion kinematics is likely to have been tuned for survival in the habitats of each species. Although kinematics of locomotion is thought to be influenced by habitats, the quantitative relation between the kinematics and environmental factors has not been fully revealed. Here, we performed comparative analyses of larval locomotion in 11 Drosophila species. We found that larval locomotion kinematics are divergent among the species. The diversity is not correlated to the body length but is correlated instead to the minimum habitat temperature of the species. Phylogenetic analyses using Bayesian inference suggest that the evolutionary rate of the kinematics is diverse among phylogenetic trees. The results of this study imply that the kinematics of larval locomotion has diverged in the evolutionary history of the genus Drosophila and evolved under the effects of the minimum ambient temperature of habitats.


2021 ◽  
Author(s):  
Stéphane Peyrégne ◽  
Janet Kelso ◽  
Benjamin Marco Peter ◽  
Svante Pääbo

Proteins associated with the spindle apparatus, a cytoskeletal structure that ensures the proper segregation of chromosomes during cell division, experienced an unusual number of amino acid substitutions in modern humans after the split from the ancestors of Neandertals and Denisovans. Here, we analyze the history of these substitutions and show that some of the genes in which they occur may have been targets of positive selection. We also find that the two changes in the kinetochore scaffold 1 (KNL1) protein, previously believed to be specific to modern humans, were present in some Neandertals. We show that the KNL1 gene of these Neandertals shared a common ancestor with present-day Africans about 200,000 years ago due to gene flow from the ancestors (or relatives) of modern humans into Neandertals. Subsequently, some non-Africans inherited this modern human-like gene variant from Neandertals, but none inherited the ancestral gene variants. These results add to the growing evidence of early contacts between modern humans and archaic groups in Eurasia and illustrate the intricate relationships among these groups.


Sign in / Sign up

Export Citation Format

Share Document