scholarly journals A Systematic Evaluation of Single-cell RNA-sequencing Imputation Methods

Author(s):  
Wenpin Hou ◽  
Zhicheng Ji ◽  
Hongkai Ji ◽  
Stephanie C. Hicks

ABSTRACTThe rapid development of single-cell RNA-sequencing (scRNA-seq) technology, with increased sparsity compared to bulk RNA-sequencing (RNA-seq), has led to the emergence of many methods for preprocessing, including imputation methods. Here, we systematically evaluate the performance of 18 state-of-the-art scRNA-seq imputation methods using cell line and tissue data measured across experimental protocols. Specifically, we assess the similarity of imputed cell profiles to bulk samples as well as investigate whether methods recover relevant biological signals or introduce spurious noise in three downstream analyses: differential expression, unsupervised clustering, and inferring pseudotemporal trajectories. Broadly, we found significant variability in the performance of the methods across evaluation settings. While most scRNA-seq imputation methods recover biological expression observed in bulk RNA-seq data, the majority of the methods do not improve performance in downstream analyses compared to no imputation, in particular for clustering and trajectory analysis, and thus should be used with caution. Furthermore, we find that the performance of scRNA-seq imputation methods depends on many factors including the experimental protocol, the sparsity of the data, the number of cells in the dataset, and the magnitude of the effect sizes. We summarize our results and provide a key set of recommendations for users and investigators to navigate the current space of scRNA-seq imputation methods.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Beate Vieth ◽  
Swati Parekh ◽  
Christoph Ziegenhain ◽  
Wolfgang Enard ◽  
Ines Hellmann

Abstract The recent rapid spread of single cell RNA sequencing (scRNA-seq) methods has created a large variety of experimental and computational pipelines for which best practices have not yet been established. Here, we use simulations based on five scRNA-seq library protocols in combination with nine realistic differential expression (DE) setups to systematically evaluate three mapping, four imputation, seven normalisation and four differential expression testing approaches resulting in ~3000 pipelines, allowing us to also assess interactions among pipeline steps. We find that choices of normalisation and library preparation protocols have the biggest impact on scRNA-seq analyses. Specifically, we find that library preparation determines the ability to detect symmetric expression differences, while normalisation dominates pipeline performance in asymmetric DE-setups. Finally, we illustrate the importance of informed choices by showing that a good scRNA-seq pipeline can have the same impact on detecting a biological signal as quadrupling the sample size.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Wenpin Hou ◽  
Zhicheng Ji ◽  
Hongkai Ji ◽  
Stephanie C. Hicks

2019 ◽  
Author(s):  
Beate Vieth ◽  
Swati Parekh ◽  
Christoph Ziegenhain ◽  
Wolfgang Enard ◽  
Ines Hellmann

AbstractThe recent rapid spread of single cell RNA sequencing (scRNA-seq) methods has created a large variety of experimental and computational pipelines for which best practices have not been established, yet. Here, we use simulations based on five scRNA-seq library protocols in combination with nine realistic differential expression (DE) setups to systematically evaluate three mapping, four imputation, seven normalisation and four differential expression testing approaches resulting in ∼ 3,000 pipelines, allowing us to also assess interactions among pipeline steps. We find that choices of normalisation and library preparation protocols have the biggest impact on scRNA-seq analyses. Specifically, we find that library preparation determines the ability to detect symmetric expression differences, while normalisation dominates pipeline performance in asymmetric DE-setups. Finally, we illustrate the importance of informed choices by showing that a good scRNA-seq pipeline can have the same impact on detecting a biological signal as quadrupling the sample size.


2018 ◽  
Author(s):  
Xianwen Ren ◽  
Liangtao Zheng ◽  
Zemin Zhang

ABSTRACTClustering is a prevalent analytical means to analyze single cell RNA sequencing data but the rapidly expanding data volume can make this process computational challenging. New methods for both accurate and efficient clustering are of pressing needs. Here we proposed a new clustering framework based on random projection and feature construction for large scale single-cell RNA sequencing data, which greatly improves clustering accuracy, robustness and computational efficacy for various state-of-the-art algorithms benchmarked on multiple real datasets. On a dataset with 68,578 human blood cells, our method reached 20% improvements for clustering accuracy and 50-fold acceleration but only consumed 66% memory usage compared to the widely-used software package SC3. Compared to k-means, the accuracy improvement can reach 3-fold depending on the concrete dataset. An R implementation of the framework is available from https://github.com/Japrin/sscClust.


Author(s):  
Paul Datlinger ◽  
André F Rendeiro ◽  
Thorina Boenke ◽  
Thomas Krausgruber ◽  
Daniele Barreca ◽  
...  

AbstractCell atlas projects and single-cell CRISPR screens hit the limits of current technology, as they require cost-effective profiling for millions of individual cells. To satisfy these enormous throughput requirements, we developed “single-cell combinatorial fluidic indexing” (scifi) and applied it to single-cell RNA sequencing. The resulting scifi-RNA-seq assay combines one-step combinatorial pre-indexing of single-cell transcriptomes with subsequent single-cell RNA-seq using widely available droplet microfluidics. Pre-indexing allows us to load multiple cells per droplet, which increases the throughput of droplet-based single-cell RNA-seq up to 15-fold, and it provides a straightforward way of multiplexing hundreds of samples in a single scifi-RNA-seq experiment. Compared to multi-round combinatorial indexing, scifi-RNA-seq provides an easier, faster, and more efficient workflow, thereby enabling massive-scale scRNA-seq experiments for a broad range of applications ranging from population genomics to drug screens with scRNA-seq readout. We benchmarked scifi-RNA-seq on various human and mouse cell lines, and we demonstrated its feasibility for human primary material by profiling TCR activation in T cells.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1947
Author(s):  
Samarendra Das ◽  
Anil Rai ◽  
Michael L. Merchant ◽  
Matthew C. Cave ◽  
Shesh N. Rai

Single-cell RNA-sequencing (scRNA-seq) is a recent high-throughput sequencing technique for studying gene expressions at the cell level. Differential Expression (DE) analysis is a major downstream analysis of scRNA-seq data. DE analysis the in presence of noises from different sources remains a key challenge in scRNA-seq. Earlier practices for addressing this involved borrowing methods from bulk RNA-seq, which are based on non-zero differences in average expressions of genes across cell populations. Later, several methods specifically designed for scRNA-seq were developed. To provide guidance on choosing an appropriate tool or developing a new one, it is necessary to comprehensively study the performance of DE analysis methods. Here, we provide a review and classification of different DE approaches adapted from bulk RNA-seq practice as well as those specifically designed for scRNA-seq. We also evaluate the performance of 19 widely used methods in terms of 13 performance metrics on 11 real scRNA-seq datasets. Our findings suggest that some bulk RNA-seq methods are quite competitive with the single-cell methods and their performance depends on the underlying models, DE test statistic(s), and data characteristics. Further, it is difficult to obtain the method which will be best-performing globally through individual performance criterion. However, the multi-criteria and combined-data analysis indicates that DECENT and EBSeq are the best options for DE analysis. The results also reveal the similarities among the tested methods in terms of detecting common DE genes. Our evaluation provides proper guidelines for selecting the proper tool which performs best under particular experimental settings in the context of the scRNA-seq.


2017 ◽  
Author(s):  
Luke Zappia ◽  
Belinda Phipson ◽  
Alicia Oshlack

AbstractAs single-cell RNA sequencing technologies have rapidly developed, so have analysis methods. Many methods have been tested, developed and validated using simulated datasets. Unfortunately, current simulations are often poorly documented, their similarity to real data is not demonstrated, or reproducible code is not available.Here we present the Splatter Bioconductor package for simple, reproducible and well-documented simulation of single-cell RNA-seq data. Splatter provides an interface to multiple simulation methods including Splat, our own simulation, based on a gamma-Poisson distribution. Splat can simulate single populations of cells, populations with multiple cell types or differentiation paths.


Kidney360 ◽  
2021 ◽  
pp. 10.34067/KID.0003682021
Author(s):  
Rachel M B Bell ◽  
Laura Denby

Kidney disease represents a global health burden of increasing prevalence and is an independent risk factor for cardiovascular disease. Myeloid cells are a major cellular compartment of the immune system; they are found in the healthy kidney and in increased numbers in the damaged and/or diseased kidney, where they act as key players in the progression of injury, inflammation and fibrosis. They possess enormous plasticity and heterogeneity, adopting different phenotypic and functional characteristics in response to stimuli in the local milieu. Though this inherent complexity remains to be fully understood in the kidney, advances in single-cell genomics promises to change this. Specifically, single-cell RNA sequencing (scRNA-seq) has had a transformative effect on kidney research, enabling the profiling and analysis of the transcriptomes of single cells at unprecedented resolution and throughput, and subsequent generation of cell atlases. Moving forward, combining scRNA- and single-nuclear RNA-seq with greater resolution spatial transcriptomics will allow spatial mapping of kidney disease of varying aetiology to further reveal the patterning of immune cells and non-immune renal cells. This review summarises the roles of myeloid cells in kidney health and disease, the experimental workflow in currently available scRNA-seq technologies and published findings using scRNA-seq in the context of myeloid cells and the kidney.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S062-S062
Author(s):  
A Lewis ◽  
B Pan-Castillo ◽  
G Berti ◽  
C Felice ◽  
H Gordon ◽  
...  

Abstract Background Histone-deacetylase (HDAC) enzymes are a broad class of ubiquitously expressed enzymes that modulate histone acetylation, chromatin accessibility and gene expression. In models of Inflammatory bowel disease (IBD), HDAC inhibitors, such as Valproic acid (VPA) are proven anti-inflammatory agents and evidence suggests that they also inhibit fibrosis in non-intestinal organs. However, the role of HDAC enzymes in stricturing Crohn’s disease (CD) has not been characterised; this is key to understanding the molecular mechanism and developing novel therapies. Methods To evaluate HDAC expression in the intestine of SCD patients, we performed unbiased single-cell RNA sequencing (sc-RNA-seq) of over 10,000 cells isolated from full-thickness surgical resection specimens of non-SCD (NSCD; n=2) and SCD intestine (n=3). Approximately, 1000 fibroblasts were identified for further analysis, including a distinct cluster of myofibroblasts. Changes in gene expression were compared between myofibroblasts and other resident intestinal fibroblasts using the sc-RNA-seq analysis pipeline in Partek. Changes in HDAC expression and markers of HDAC activity (H3K27ac) were confirmed by immunohistochemistry in FFPE tissue from patient matched NSCD and SCD intestine (n=14 pairs). The function of HDACs in intestinal fibroblasts in the CCD-18co cell line and primary CD myofibroblast cultures (n=16 cultures) was assessed using VPA, a class I HDAC inhibitor. Cells were analysed using a variety of molecular techniques including ATAC-seq, gene expression arrays, qPCR, western blot and immunofluorescent protein analysis. Results Class I HDAC (HDAC1, p= 2.11E-11; HDAC2, p= 4.28E-11; HDAC3, p= 1.60E-07; and HDAC8, p= 2.67E-03) expression was increased in myofibroblasts compared to other intestinal fibroblasts subtypes. IHC also showed an increase in the percentage of stromal HDAC2 positive cells, coupled with a decrease in the percentage of H3K27ac positive cells, in the mucosa overlying SCD intestine relative to matched NSCD areas. In the CCD-18co cell line and primary myofibroblast cultures, VPA reduced chromatin accessibility at Collagen-I gene promoters and suppressed their transcription. VPA also inhibited TGFB-induced up-regulation of Collagen-I, in part by inhibiting TGFB1|1/SMAD4 signalling. TGFB1|1 was identified as a mesenchymal specific target of VPA and siRNA knockdown of TGFB1|1 was sufficient suppress TGFB-induced up-regulation of Collagen-I. Conclusion In SCD patients, class I HDAC expression is increased in myofibroblasts. Class I HDACs inhibitors impair TGFB-signalling and inhibit Collagen-I expression. Selective targeting of TGFB1|1 offers the opportunity to increase treatment specificity by selectively targeting meschenymal cells.


Author(s):  
Zhirui Hu ◽  
Songpeng Zu ◽  
Jun S. Liu

AbstractA main challenge in analyzing single-cell RNA sequencing (scRNASeq) data is to reduce technical variations yet retain cell heterogeneity. Due to low mRNAs content per cell and molecule losses during the experiment (called “dropout”), the gene expression matrix has substantial zero read counts. Existing imputation methods either treat each cell or each gene identically and independently, which oversimplifies the gene correlation and cell type structure. We propose a statistical model-based approach, called SIMPLEs, which iteratively identifies correlated gene modules and cell clusters and imputes dropouts customized for individual gene module and cell type. Simultaneously, it quantifies the uncertainty of imputation and cell clustering. Optionally, SIMPLEs can integrate bulk RNASeq data for estimating dropout rates. In simulations, SIMPLEs performed significantly better than prevailing scRNASeq imputation methods by various metrics. By applying SIMPLEs to several real data sets, we discovered gene modules that can further classify subtypes of cells. Our imputations successfully recovered the expression trends of marker genes in stem cell differentiation and can discover putative pathways regulating biological processes.


Sign in / Sign up

Export Citation Format

Share Document