scholarly journals Long-read cDNA Sequencing Enables a ‘Gene-Like’ Transcript Annotation of Arabidopsis Transposable Elements

2020 ◽  
Author(s):  
Kaushik Panda ◽  
R. Keith Slotkin

AbstractHigh-quality transcript-based annotations of genes facilitates both genome-wide analyses and detailed single locus research. In contrast, transposable element (TE) annotations are rudimentary, consisting of only information on location and type of TE. When analyzing TEs, their repetitiveness and limited annotation prevents the ability to distinguish between potentially functional expressed elements and degraded copies. To improve genome-wide TE bioinformatics, we performed long-read Oxford Nanopore sequencing of cDNAs from Arabidopsis lines deficient in multiple layers of TE repression. We used these uniquely-mapping transcripts to identify the set of TEs able to generate mRNAs, and created a new transcript-based annotation of TEs that we have layered upon the existing high-quality community standard TAIR10 annotation. The improved annotation enables us to test specific standing hypotheses in the TE field. We demonstrate that inefficient TE splicing does not trigger small RNA production, and the cell more strongly targets DNA methylation to TEs that have the potential to make mRNAs. This work provides a transcript-based TE annotation for Arabidopsis, and serves as a blueprint to reduce the genomic complexity associated with repetitive TEs in any organism.

2021 ◽  
Author(s):  
Shruta Sandesh Pai ◽  
Aimee Rachel Mathew ◽  
Roy Anindya

AbstractRecent development of Oxford Nanopore long-read sequencing has opened new avenues of identifying epigenetic DNA methylation. Among the different epigenetic DNA methylations, N6-methyladenosine is the most prevalent DNA modification in prokaryotes and 5-methylcytosine is common in higher eukaryotes. Here we investigated if N6-methyladenosine and 5-methylcytosine modifications could be predicted from the nanopore sequencing data. Using publicly available genome sequencing data of Saccharomyces cerevisiae, we compared the open-access computational tools, including Tombo, mCaller, Nanopolish and DeepSignal for predicting 6mA and 5mC. Our results suggest that Tombo and mCaller can predict DNA N6-methyladenosine modifications at a specific location, whereas, Tombo dampened fraction, Nanopolish methylation likelihood and DeepSignal methylation probability have comparable efficiency for 5-methylcytosine prediction from Oxford Nanopore sequencing data.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Julien Masliah-Planchon ◽  
Elodie Girard ◽  
Philipp Euskirchen ◽  
Christine Bourneix ◽  
Delphine Lequin ◽  
...  

Abstract Medulloblastoma (MB) can be classified into four molecular subgroups (WNT group, SHH group, group 3, and group 4). The gold standard of assignment of molecular subgroup through DNA methylation profiling uses Illumina EPIC array. However, this tool has some limitation in terms of cost and timing, in order to get the results soon enough for clinical use. We present an alternative DNA methylation assay based on nanopore sequencing efficient for rapid, cheaper, and reliable subgrouping of clinical MB samples. Low-depth whole genome with long-read single-molecule nanopore sequencing was used to simultaneously assess copy number profile and MB subgrouping based on DNA methylation. The DNA methylation data generated by Nanopore sequencing were compared to a publicly available reference cohort comprising over 2,800 brain tumors including the four subgroups of MB (Capper et al. Nature; 2018) to generate a score that estimates a confidence with a tumor group assignment. Among the 24 MB analyzed with nanopore sequencing (six WNT, nine SHH, five group 3, and four group 4), all of them were classified in the appropriate subgroup established by expression-based Nanostring subgrouping. In addition to the subgrouping, we also examine the genomic profile. Furthermore, all previously identified clinically relevant genomic rearrangements (mostly MYC and MYCN amplifications) were also detected with our assay. In conclusion, we are confirming the full reliability of nanopore sequencing as a novel rapid and cheap assay for methylation-based MB subgrouping. We now plan to implement this technology to other embryonal tumors of the central nervous system.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jean-Marc Aury ◽  
Benjamin Istace

Abstract Single-molecule sequencing technologies have recently been commercialized by Pacific Biosciences and Oxford Nanopore with the promise of sequencing long DNA fragments (kilobases to megabases order) and then, using efficient algorithms, provide high quality assemblies in terms of contiguity and completeness of repetitive regions. However, the error rate of long-read technologies is higher than that of short-read technologies. This has a direct consequence on the base quality of genome assemblies, particularly in coding regions where sequencing errors can disrupt the coding frame of genes. In the case of diploid genomes, the consensus of a given gene can be a mixture between the two haplotypes and can lead to premature stop codons. Several methods have been developed to polish genome assemblies using short reads and generally, they inspect the nucleotide one by one, and provide a correction for each nucleotide of the input assembly. As a result, these algorithms are not able to properly process diploid genomes and they typically switch from one haplotype to another. Herein we proposed Hapo-G (Haplotype-Aware Polishing Of Genomes), a new algorithm capable of incorporating phasing information from high-quality reads (short or long-reads) to polish genome assemblies and in particular assemblies of diploid and heterozygous genomes.


Author(s):  
Yunfan Fan ◽  
Andrew N Gale ◽  
Anna Bailey ◽  
Kali Barnes ◽  
Kiersten Colotti ◽  
...  

Abstract We present a highly contiguous genome and transcriptome of the pathogenic yeast, Candida nivariensis. We sequenced both the DNA and RNA of this species using both the Oxford Nanopore Technologies (ONT) and Illumina platforms. We assembled the genome into an 11.8 Mb draft composed of 16 contigs with an N50 of 886 Kb, including a circular mitochondrial sequence of 28 Kb. Using direct RNA nanopore sequencing and Illumina cDNA sequencing, we constructed an annotation of our new assembly, supplemented by lifting over genes from Saccharomyces cerevisiae and Candida glabrata.


Author(s):  
Karlijn Doorenspleet ◽  
Lara Jansen ◽  
Saskia Oosterbroek ◽  
Oscar Bos ◽  
Pauline Kamermans ◽  
...  

To monitor the effect of nature restoration projects in North Sea ecosystems, accurate and intensive biodiversity assessments are vital. DNA based techniques and especially environmental DNA (eDNA) metabarcoding from seawater is becoming a powerful monitoring tool. However, current approaches are based on genetic target regions of <500 nucleotides, which offer limited taxonomic resolution. This study aims to develop and validate a long read nanopore sequencing method for eDNA that enables improved identification of fish species. We designed a universal primer pair targeting a 2kb region covering the 12S and 16S rRNA genes of fish mitochondria. eDNA was amplified and sequenced using the Oxford Nanopore MiniON. Sequence data was processed using the new pipeline Decona, and accurate consensus identities of above 99.9% were retrieved. The primer set efficiency was tested with eDNA from a 3.000.000 L zoo aquarium with 31 species of bony fish and elasmobranchs. Over 55% of the species present were identified on species level and over 75% on genus level. Next, our long read eDNA metabarcoding approach was applied to North Sea eDNA field samples collected at ship wreck sites, the Gemini Offshore Wind Farm, the Borkum Reef Grounds and a bare sand bottom. Here, location specific fish and vertebrate communities were obtained. Incomplete reference databases still form a major bottleneck in further developing high resolution long read metabarcoding. Yet, the method has great potential for rapid and accurate fish species monitoring in marine field studies.


DNA Research ◽  
2018 ◽  
Vol 25 (5) ◽  
pp. 511-520 ◽  
Author(s):  
Satoshi Takahashi ◽  
Kenji Osabe ◽  
Naoki Fukushima ◽  
Shohei Takuno ◽  
Naomi Miyaji ◽  
...  

2020 ◽  
Vol 10 (7) ◽  
pp. 2179-2183 ◽  
Author(s):  
Stefan Prost ◽  
Malte Petersen ◽  
Martin Grethlein ◽  
Sarah Joy Hahn ◽  
Nina Kuschik-Maczollek ◽  
...  

Ever decreasing costs along with advances in sequencing and library preparation technologies enable even small research groups to generate chromosome-level assemblies today. Here we report the generation of an improved chromosome-level assembly for the Siamese fighting fish (Betta splendens) that was carried out during a practical university master’s course. The Siamese fighting fish is a popular aquarium fish and an emerging model species for research on aggressive behavior. We updated the current genome assembly by generating a new long-read nanopore-based assembly with subsequent scaffolding to chromosome-level using previously published Hi-C data. The use of ∼35x nanopore-based long-read data sequenced on a MinION platform (Oxford Nanopore Technologies) allowed us to generate a baseline assembly of only 1,276 contigs with a contig N50 of 2.1 Mbp, and a total length of 441 Mbp. Scaffolding using the Hi-C data resulted in 109 scaffolds with a scaffold N50 of 20.7 Mbp. More than 99% of the assembly is comprised in 21 scaffolds. The assembly showed the presence of 96.1% complete BUSCO genes from the Actinopterygii dataset indicating a high quality of the assembly. We present an improved full chromosome-level assembly of the Siamese fighting fish generated during a university master’s course. The use of ∼35× long-read nanopore data drastically improved the baseline assembly in terms of continuity. We show that relatively in-expensive high-throughput sequencing technologies such as the long-read MinION sequencing platform can be used in educational settings allowing the students to gain practical skills in modern genomics and generate high quality results that benefit downstream research projects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Albina Nowak ◽  
Omer Murik ◽  
Tzvia Mann ◽  
David A. Zeevi ◽  
Gheona Altarescu

AbstractMore than 900 variants have been described in the GLA gene. Some intronic variants and copy number variants in GLA can cause Fabry disease but will not be detected by classical Sanger sequence. We aimed to design and validate a method for sequencing the GLA gene using long-read Oxford Nanopore sequencing technology. Twelve Fabry patients were blindly analyzed, both by conventional Sanger sequence and by long-read sequencing of a 13 kb PCR amplicon. We used minimap2 to align the long-read data and Nanopolish and Sniffles to call variants. All the variants detected by Sanger (including a deep intronic variant) were also detected by long-read sequencing. One patient had a deletion that was not detected by Sanger sequencing but was detected by the new technology. Our long-read sequencing-based method was able to detect missense variants and an exonic deletion, with the added advantage of intronic analysis. It can be used as an efficient and cost-effective tool for screening and diagnosing Fabry disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Davide Bolognini ◽  
Alberto Magi

Structural variants (SVs) are genomic rearrangements that involve at least 50 nucleotides and are known to have a serious impact on human health. While prior short-read sequencing technologies have often proved inadequate for a comprehensive assessment of structural variation, more recent long reads from Oxford Nanopore Technologies have already been proven invaluable for the discovery of large SVs and hold the potential to facilitate the resolution of the full SV spectrum. With many long-read sequencing studies to follow, it is crucial to assess factors affecting current SV calling pipelines for nanopore sequencing data. In this brief research report, we evaluate and compare the performances of five long-read SV callers across four long-read aligners using both real and synthetic nanopore datasets. In particular, we focus on the effects of read alignment, sequencing coverage, and variant allele depth on the detection and genotyping of SVs of different types and size ranges and provide insights into precision and recall of SV callsets generated by integrating the various long-read aligners and SV callers. The computational pipeline we propose is publicly available at https://github.com/davidebolo1993/EViNCe and can be adjusted to further evaluate future nanopore sequencing datasets.


Sign in / Sign up

Export Citation Format

Share Document