scholarly journals Automated interpretation of time-lapse quantitative phase image by machine learning to study cellular dynamics during epithelial–mesenchymal transition

2020 ◽  
Vol 25 (08) ◽  
Author(s):  
Lenka Strbkova ◽  
Brittany B. Carson ◽  
Theresa Vincent ◽  
Pavel Vesely ◽  
Radim Chmelik
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diane N. H. Kim ◽  
Alexander A. Lim ◽  
Michael A. Teitell

AbstractQuantitative phase microscopy (QPM) enables studies of living biological systems without exogenous labels. To increase the utility of QPM, machine-learning methods have been adapted to extract additional information from the quantitative phase data. Previous QPM approaches focused on fluid flow systems or time-lapse images that provide high throughput data for cells at single time points, or of time-lapse images that require delayed post-experiment analyses, respectively. To date, QPM studies have not imaged specific cells over time with rapid, concurrent analyses during image acquisition. In order to study biological phenomena or cellular interactions over time, efficient time-dependent methods that automatically and rapidly identify events of interest are desirable. Here, we present an approach that combines QPM and machine learning to identify tumor-reactive T cell killing of adherent cancer cells rapidly, which could be used for identifying and isolating novel T cells and/or their T cell receptors for studies in cancer immunotherapy. We demonstrate the utility of this method by machine learning model training and validation studies using one melanoma-cognate T cell receptor model system, followed by high classification accuracy in identifying T cell killing in an additional, independent melanoma-cognate T cell receptor model system. This general approach could be useful for studying additional biological systems under label-free conditions over extended periods of examination.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009193
Author(s):  
Vlada S. Rozova ◽  
Ayad G. Anwer ◽  
Anna E. Guller ◽  
Hamidreza Aboulkheyr Es ◽  
Zahra Khabir ◽  
...  

Epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial transition (MET), are believed to play key roles in facilitating the metastatic cascade. Metastatic lesions often exhibit a similar epithelial-like state to that of the primary tumour, in particular, by forming carcinoma cell clusters via E-cadherin-mediated junctional complexes. However, the factors enabling mesenchymal-like micrometastatic cells to resume growth and reacquire an epithelial phenotype in the target organ microenvironment remain elusive. In this study, we developed a workflow using image-based cell profiling and machine learning to examine morphological, contextual and molecular states of individual breast carcinoma cells (MDA-MB-231). MDA-MB-231 heterogeneous response to the host organ microenvironment was modelled by substrates with controllable stiffness varying from 0.2kPa (soft tissues) to 64kPa (bone tissues). We identified 3 distinct morphological cell types (morphs) varying from compact round-shaped to flattened irregular-shaped cells with lamellipodia, predominantly populating 2-kPa and >16kPa substrates, respectively. These observations were accompanied by significant changes in E-cadherin and vimentin expression. Furthermore, we demonstrate that the bone-mimicking substrate (64kPa) induced multicellular cluster formation accompanied by E-cadherin cell surface localisation. MDA-MB-231 cells responded to different substrate stiffness by morphological adaptation, changes in proliferation rate and cytoskeleton markers, and cluster formation on bone-mimicking substrate. Our results suggest that the stiffest microenvironment can induce MET.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Aishah Nasir ◽  
Alice Cardall ◽  
Ramadhan T Othman ◽  
Niovi Nicolaou ◽  
Anbarasu Lourdusamy ◽  
...  

Abstract Background Therapeutic intervention in metastatic medulloblastoma is dependent on elucidating the underlying metastatic mechanism. We investigated whether an epithelial–mesenchymal transition (EMT)-like pathway could drive medulloblastoma metastasis. Methods A 3D Basement Membrane Extract (3D-BME) model was used to investigate medulloblastoma cell migration. Cell line growth was quantified with AlamarBlue metabolic assays and the morphology assessed by time-lapse imaging. Gene expression was analyzed by qRT-PCR and protein expression by immunohistochemistry of patient tissue microarrays and mouse orthotopic xenografts. Chromatin immunoprecipitation was used to determine whether the EMT transcription factor TWIST1 bound to the promoter of the multidrug pump ABCB1. TWIST1 was overexpressed in MED6 cells by lentiviral transduction (MED6-TWIST1). Inhibition of ABCB1 was mediated by vardenafil, and TWIST1 expression was reduced by either Harmine or shRNA. Results Metastatic cells migrated to form large metabolically active aggregates, whereas non-tumorigenic/non-metastatic cells formed small aggregates with decreasing metabolic activity. TWIST1 expression was upregulated in the 3D-BME model. TWIST1 and ABCB1 were significantly associated with metastasis in patients (P = .041 and P = .04, respectively). High nuclear TWIST1 expression was observed in the invasive edge of the MED1 orthotopic model, and TWIST1 knockdown in cell lines was associated with reduced cell migration (P < .05). TWIST1 bound to the ABCB1 promoter (P = .03) and induced cell aggregation in metastatic and TWIST1-overexpressing, non-metastatic (MED6-TWIST1) cells, which was significantly attenuated by vardenafil (P < .05). Conclusions In this study, we identified a TWIST1–ABCB1 signaling axis during medulloblastoma migration, which can be therapeutically targeted with the clinically approved ABCB1 inhibitor, vardenafil.


2020 ◽  
Author(s):  
Evangéline Despin-Guitard ◽  
Navrita Mathiah ◽  
Matthew Stower ◽  
Wallis Nahaboo ◽  
Elif Sema Eski ◽  
...  

ABSTRACTThe epiblast, a pseudostratified epithelium, is the precursor for the three main germ layers required for body shape and organogenesis: ectoderm, mesoderm, and endoderm. At gastrulation, a subpopulation of epiblast cells constitutes a transient posteriorly located structure called the primitive streak, where cells that undergo epithelial-mesenchymal transition make up the mesoderm and endoderm lineages.In order to observe the behavior of individual cells, epiblast cells were labeled ubiquitously or in a mosaic fashion using fluorescent membrane reporters. The cell shapes of individual cells and the packing and behaviour of neighbouring cells during primitive streak formation were recorded through live time-lapse imaging. Posterior epiblast displayed a higher frequency of rosettes, a signature of cell rearrangements, prior to primitive streak initiation. A third of rosettes were associated with a central cell undergoing mitosis. Interestingly, cells at the primitive streak, in particular delaminating cells, underwent mitosis twice more frequently than other epiblast cells, suggesting a role for cell division in epithelial-mesenchymal transition. Pseudostratified epithelia are characterized by interkinetic nuclear migration, where mitosis occurs at the apical side of the epithelium. However, we found that exclusively on the posterior side of the epiblast, mitosis was not restricted to the apical side. Non-apical mitosis was apparent as early as E5.75, just after the establishment of the anterior-posterior axis, and prior to initiation of epithelial-mesenchymal transition. Non-apical mitosis was associated with primitive streak morphogenesis, as it occurred specifically in the streak even when ectopically located. Most non-apical mitosis resulted in one or two daughter cells leaving the epiblast layer to become mesoderm. Furthermore, in contrast to what has been described in other pseudostratified epithelia such as neuroepithelium, the majority of cells dividing apically detached completely from the basal pole in the epiblast.Cell rearrangement associated with mitotic cell rounding in the posterior epiblast during gastrulation, in particular when it occurs on the basal side, might thus facilitate cell ingression through the PS and transition to a mesenchymal phenotype.GRAPHICAL ABSTRACT


Sign in / Sign up

Export Citation Format

Share Document