scholarly journals Bridging parametric and nonparametric measures of species interactions unveils new insights of non-equilibrium dynamics

2020 ◽  
Author(s):  
Chuliang Song ◽  
Serguei Saavedra

AbstractA central theme in ecological research is to understand how species interactions contribute to community dynamics. Species interactions are the basis of parametric (model-driven) and nonpara-metric (model-free) approaches in theoretical and empirical work. However, despite their different interpretations across these approaches, these measures have occasionally been used interchangeably, limiting our opportunity to use their differences to gain new insights about ecological systems. Here, we revisit two of the most used measures across these approaches: species interactions measured as constant direct effects (typically used in parametric approaches) and local aggregated effects (typically used in nonparametric approaches). We show two fundamental properties of species interactions that cannot be revealed without bridging these definitions. First, we show that the local aggregated intraspecific effect summarizes all potential pathways through which one species impacts itself, which are likely to be negative even without any constant direct self-regulation mechanism. This property has implications for the long-held debate on how communities can be stabilized when little evidence of self-regulation has been found among higher-trophic species. Second, we show that a local aggregated interspecific effect between two species is correlated with the constant direct interspecific effect if and only if the population dynamics do not have any higher-order direct effects. This other property provides a rigorous methodology to detect direct higher-order effects in the field and experimental data. Overall, our findings illustrate a practical route to gain further insights about non-equilibrium ecological dynamics and species interactions.

2021 ◽  
Vol 119 (1) ◽  
pp. e2020956119
Author(s):  
Anshuman Swain ◽  
Levi Fussell ◽  
William F. Fagan

The assembly and maintenance of microbial diversity in natural communities, despite the abundance of toxin-based antagonistic interactions, presents major challenges for biological understanding. A common framework for investigating such antagonistic interactions involves cyclic dominance games with pairwise interactions. The incorporation of higher-order interactions in such models permits increased levels of microbial diversity, especially in communities in which antibiotic-producing, sensitive, and resistant strains coexist. However, most such models involve a small number of discrete species, assume a notion of pure cyclic dominance, and focus on low mutation rate regimes, none of which well represent the highly interlinked, quickly evolving, and continuous nature of microbial phenotypic space. Here, we present an alternative vision of spatial dynamics for microbial communities based on antagonistic interactions—one in which a large number of species interact in continuous phenotypic space, are capable of rapid mutation, and engage in both direct and higher-order interactions mediated by production of and resistance to antibiotics. Focusing on toxin production, vulnerability, and inhibition among species, we observe highly divergent patterns of diversity and spatial community dynamics. We find that species interaction constraints (rather than mobility) best predict spatiotemporal disturbance regimes, whereas community formation time, mobility, and mutation size best explain patterns of diversity. We also report an intriguing relationship among community formation time, spatial disturbance regimes, and diversity dynamics. This relationship, which suggests that both higher-order interactions and rapid evolution are critical for the origin and maintenance of microbial diversity, has broad-ranging links to the maintenance of diversity in other systems.


Author(s):  
Eric Post

This chapter explores the implications of climate change for community composition, dynamics, and stability. It also looks at further examples in which climatic variability mediates interactions among species, in some cases degrading community stability and in other cases promoting it. Ecological theory offers contrasting predictions regarding the consequences for species coexistence and community stability of environmental variability. For instance, short-term instabilities in community composition owing to, for example, high-frequency environmental disturbance may promote the long-term coexistence of species by preventing competitive exclusion of one species by another. Other work suggests, however, that the stability of biological communities in stochastic environments is only possible if there is sufficiently strong self-regulation at one or more trophic levels, or if self-regulation is strong while species interactions are weak, because environmental erosion of population stability at one trophic level may contribute to instability of the community as a whole.


2020 ◽  
Vol 287 (1940) ◽  
pp. 20201571
Author(s):  
Yinglin Li ◽  
Daniel Bearup ◽  
Jinbao Liao

Recent studies have suggested that intransitive competition, as opposed to hierarchical competition, allows more species to coexist. Furthermore, it is recognized that the prevalent paradigm, which assumes that species interactions are exclusively pairwise, may be insufficient. More importantly, whether and how habitat loss, a key driver of biodiversity loss, can alter these complex competition structures (and therefore species coexistence) remain unclear. We thus present a new, simple yet comprehensive metapopulation framework that can account for any competition pattern and more complex higher-order interactions (HOIs) among species. We find that competitive intransitivity increases community diversity and that HOIs generally enhance this effect. Essentially, intransitivity promotes species richness by preventing the dominance of a few species, unlike the hierarchical competition, while HOIs facilitate species coexistence through stabilizing community fluctuations. However, variation in species’ vital rates and habitat loss can weaken or even reverse such higher-order effects, as their interaction can lead to a more rapid decline in competitive intransitivity under HOIs. Thus, it is essential to correctly identify the most appropriate interaction model for a given system before models are used to inform conservation efforts. Overall, our simple model framework provides a more parsimonious explanation for biodiversity maintenance than the existing theory.


2019 ◽  
Author(s):  
Joe Butler ◽  
Samuel Ngabo ◽  
Marcus Missal

Complex biological systems build up temporal expectations to facilitate adaptive responses to environmental events, in order to minimise costs associated with incorrect responses, and maximise the benefits of correct responses. In the lab, this is clearly demonstrated in tasks which show faster response times when the period between warning (S1) and target stimulus (S2) on the previous trial was short and slower when the previous trial foreperiod was long. The mechanisms driving such higher order effects in temporal preparation paradigms are still under debate, with key theories proposing that either i) the foreperiod leads to automatic modulation of the arousal system which influences responses on the subsequent trial, or ii) that exposure to a foreperiod results in the creation of a memory trace which is used to guide responses on the subsequent trial. Here we provide data which extends the evidence base for the memory accounts, by showing that previous foreperiod exposures are cumulative with reaction times shortening after repeated exposures; whilst also demonstrate that the higher order effects associated with a foreperiod remain active for several trials.


AI and Ethics ◽  
2021 ◽  
Author(s):  
Marc Steen ◽  
Tjerk Timan ◽  
Ibo van de Poel

AbstractThe collection and use of personal data on citizens in the design and deployment of algorithms in the domain of justice and security is a sensitive topic. Values like fairness, autonomy, privacy, accuracy, transparency and property are at stake. Negative examples of algorithms that propagate or exacerbate biases, inequalities or injustices have received ample attention, both in academia and in popular media. To supplement this view, we will discuss two positive examples of Responsible Innovation (RI): the design and deployment of algorithms in decision support, with good intentions and careful approaches. We then explore potential, unintended, undesirable, higher-order effects of algorithms—effects that may occur despite good intentions and careful approaches. We do that by engaging with anticipation and responsiveness, two key dimensions of Responsible Innovation. We close the paper with proposing a framework and a series of tentative recommendations to promote anticipation and responsiveness in the design and deployment of algorithms in decision support in the domain of justice and security.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Åkesson ◽  
Alva Curtsdotter ◽  
Anna Eklöf ◽  
Bo Ebenman ◽  
Jon Norberg ◽  
...  

AbstractEco-evolutionary dynamics are essential in shaping the biological response of communities to ongoing climate change. Here we develop a spatially explicit eco-evolutionary framework which features more detailed species interactions, integrating evolution and dispersal. We include species interactions within and between trophic levels, and additionally, we incorporate the feature that species’ interspecific competition might change due to increasing temperatures and affect the impact of climate change on ecological communities. Our modeling framework captures previously reported ecological responses to climate change, and also reveals two key results. First, interactions between trophic levels as well as temperature-dependent competition within a trophic level mitigate the negative impact of climate change on biodiversity, emphasizing the importance of understanding biotic interactions in shaping climate change impact. Second, our trait-based perspective reveals a strong positive relationship between the within-community variation in preferred temperatures and the capacity to respond to climate change. Temperature-dependent competition consistently results both in higher trait variation and more responsive communities to altered climatic conditions. Our study demonstrates the importance of species interactions in an eco-evolutionary setting, further expanding our knowledge of the interplay between ecological and evolutionary processes.


Sign in / Sign up

Export Citation Format

Share Document