scholarly journals A method for achieving complete microbial genomes and improving bins from metagenomics data

Author(s):  
Lauren M. Lui ◽  
Torben N. Nielsen ◽  
Adam P. Arkin

AbstractMetagenomics facilitates the study of the genetic information from uncultured microbes and complex microbial communities. Assembling complete microbial genomes (i.e., circular with no misassemblies) from metagenomics data is difficult because most samples have high organismal complexity and strain diversity. Less than 100 circularized bacterial and archaeal genomes have been assembled from metagenomics data despite the thousands of datasets that are available. Circularized genomes are important for (1) building a reference collection as scaffolds for future assemblies, (2) providing complete gene content of a genome, (3) confirming little or no contamination of a genome, (4) studying the genomic context and synteny of genes, and (5) linking protein coding genes to ribosomal RNA genes to aid metabolic inference in 16S rRNA gene sequencing studies. We developed a method to achieve circularized genomes using iterative assembly, binning, and read mapping. In addition, this method exposes potential misassemblies from k-mer based assemblies. We chose species of the Candidate Phyla Radiation (CPR) to focus our initial efforts because they have small genomes and are only known to have one ribosomal RNA operon. We present 34 circular CPR genomes, one circular Margulisbacteria genome, and two circular megaphage genomes from 19 public and published datasets. We demonstrate findings that would likely be difficult without circularizing genomes, including that ribosomal genes are likely not operonic in the majority of CPR, and that some CPR harbor diverged forms of RNase P RNA. Code and a tutorial for this method is available at https://github.com/lmlui/Jorg.

2021 ◽  
Vol 17 (5) ◽  
pp. e1008972
Author(s):  
Lauren M. Lui ◽  
Torben N. Nielsen ◽  
Adam P. Arkin

Metagenomics facilitates the study of the genetic information from uncultured microbes and complex microbial communities. Assembling complete genomes from metagenomics data is difficult because most samples have high organismal complexity and strain diversity. Some studies have attempted to extract complete bacterial, archaeal, and viral genomes and often focus on species with circular genomes so they can help confirm completeness with circularity. However, less than 100 circularized bacterial and archaeal genomes have been assembled and published from metagenomics data despite the thousands of datasets that are available. Circularized genomes are important for (1) building a reference collection as scaffolds for future assemblies, (2) providing complete gene content of a genome, (3) confirming little or no contamination of a genome, (4) studying the genomic context and synteny of genes, and (5) linking protein coding genes to ribosomal RNA genes to aid metabolic inference in 16S rRNA gene sequencing studies. We developed a semi-automated method called Jorg to help circularize small bacterial, archaeal, and viral genomes using iterative assembly, binning, and read mapping. In addition, this method exposes potential misassemblies from k-mer based assemblies. We chose species of the Candidate Phyla Radiation (CPR) to focus our initial efforts because they have small genomes and are only known to have one ribosomal RNA operon. In addition to 34 circular CPR genomes, we present one circular Margulisbacteria genome, one circular Chloroflexi genome, and two circular megaphage genomes from 19 public and published datasets. We demonstrate findings that would likely be difficult without circularizing genomes, including that ribosomal genes are likely not operonic in the majority of CPR, and that some CPR harbor diverged forms of RNase P RNA. Code and a tutorial for this method is available at https://github.com/lmlui/Jorg and is available on the DOE Systems Biology KnowledgeBase as a beta app.


2004 ◽  
Vol 54 (6) ◽  
pp. 2369-2373 ◽  
Author(s):  
Geoffrey Foster ◽  
Barry Holmes ◽  
Arnold G. Steigerwalt ◽  
Paul A. Lawson ◽  
Petra Thorne ◽  
...  

Phenotypic and phylogenetic studies were performed on four Campylobacter-like organisms recovered from three seals and a porpoise. Comparative 16S rRNA gene sequencing studies demonstrated that the organisms represent a hitherto unknown subline within the genus Campylobacter, associated with a subcluster containing Campylobacter jejuni, Campylobacter coli and Campylobacter lari. DNA–DNA hybridization studies confirmed that the bacteria belonged to a single species, for which the name Campylobacter insulaenigrae sp. nov. is proposed. The type strain of Campylobacter insulaenigrae sp. nov. is NCTC 12927T (=CCUG 48653T).


Author(s):  
Noriko Shinozaki-Kuwahara ◽  
Kazuko Takada ◽  
Masatomo Hirasawa

Three Gram-positive, catalase-negative, coccus-shaped organisms were isolated from the oral cavities of bears. The isolates were tentatively identified as a streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequencing studies confirmed that the organisms were members of the genus Streptococcus, but they did not correspond to any recognized species of the genus. The nearest phylogenetic relative of the new isolates was Streptococcus ratti ATCC 19645T (98.6 %), however, DNA–DNA hybridization analysis showed that the isolates displayed less than 15 % DNA–DNA relatedness with the type strain of S. ratti. Colonies of the novel strains grown on mitis salivarius agar showed an extracellular polysaccharide-producing colony morphology. Based on phenotypic and phylogenetic evidence, it is proposed that the novel isolates are classified in the genus Streptococcus as Streptococcus ursoris sp. nov. The type strain of S. ursoris is NUM 1615T (=JCM 16316T=DSM 22768T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1599-1602 ◽  
Author(s):  
Hideki Yamamura ◽  
Tomohiko Tamura ◽  
Yayoi Sakiyama ◽  
Shigeaki Harayama

An actinomycete, strain TT 00-78T, was isolated from soil from a sugar-cane field on Amami Island in Japan, using an SDS/yeast extract pre-treatment method, and the taxonomy was studied using a polyphasic approach. The chemotaxonomic and morphological characterizations clearly demonstrated that the strain belongs to the genus Nocardia. 16S rRNA gene sequencing studies showed that the strain was closely related to the type strains of Nocardia pneumoniae (98.6 %), Nocardia araoensis (98.1 %), Nocardia arthritidis (97.9 %) and Nocardia beijingensis (97.7 %). However, the results of DNA–DNA hybridization and physiological and biochemical tests showed that strain TT 00-78T could be differentiated from its closest phylogenetic relatives both genotypically and phenotypically. Therefore this strain represents a novel species of the genus Nocardia, for which the name Nocardia amamiensis sp. nov. is proposed. The type strain is TT 00-78T (=NBRC 102102T=DSM 45066T=KCTC 19208T).


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Stephanie D. Jurburg ◽  
Maximilian Konzack ◽  
Nico Eisenhauer ◽  
Anna Heintz-Buschart

AbstractAs DNA sequencing has become more popular, the public genetic repositories where sequences are archived have experienced explosive growth. These repositories now hold invaluable collections of sequences, e.g., for microbial ecology, but whether these data are reusable has not been evaluated. We assessed the availability and state of 16S rRNA gene amplicon sequences archived in public genetic repositories (SRA, EBI, and DDJ). We screened 26,927 publications in 17 microbiology journals, identifying 2015 16S rRNA gene sequencing studies. Of these, 7.2% had not made their data public at the time of analysis. Among a subset of 635 studies sequencing the same gene region, 40.3% contained data which was not available or not reusable, and an additional 25.5% contained faults in data formatting or data labeling, creating obstacles for data reuse. Our study reveals gaps in data availability, identifies major contributors to data loss, and offers suggestions for improving data archiving practices.


2006 ◽  
Vol 56 (9) ◽  
pp. 2199-2202 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Hee Yoo ◽  
Jong-Shik Kim ◽  
Soon-Wo Kwon ◽  
...  

A bacterial strain, GA2-M3T, isolated from a sea-sand sample in Korea, was subjected to polyphasic taxonomic characterization. Cells of strain GA2-M3T were Gram-negative, non-motile, non-spore-forming and short rod- to ovoid-shaped. Comparative 16S rRNA gene sequencing studies confirmed that the bacterium fell within the radiation of the genus Loktanella. Similarity levels between the 16S rRNA gene sequence of strain GA2-M3T and those of type strains of Loktanella species with validly published names were 93.5–96.1 %; highest sequence similarity was with Loktanella rosea. The G+C content of the genomic DNA of strain GA2-M3T was 60.0 mol% and the predominant ubiquinone was Q-10. Major fatty acids were 18 : 1ω7c, 18 : 0 and 18 : 1ω7c 11-methyl. On the basis of the evidence presented, it is proposed that strain GA2-M3T represents a novel species, for which the name Loktanella koreensis sp. nov. is proposed. The type strain is GA2-M3T (=KACC 11519T=DSM 17925T).


2005 ◽  
Vol 55 (1) ◽  
pp. 433-436 ◽  
Author(s):  
Hideki Yamamura ◽  
Masayuki Hayakawa ◽  
Youji Nakagawa ◽  
Tomohiko Tamura ◽  
Tetsuro Kohno ◽  
...  

Chemotaxonomic and morphological characterization of two actinomycete strains, MS1-3T and AS4-2, respectively isolated from moat sediment and scumming activated sludge, was carried out. This characterization clearly demonstrated that strains MS1-3T and AS4-2 belong to the genus Nocardia. 16S rRNA gene sequencing studies showed that these isolates are most closely related to Nocardia beijingensis (98·1–98·3 % similarity), Nocardia brasiliensis (97·9–98·0 %) and Nocardia tenerifensis (97·8–97·9 %). However, the results of DNA–DNA hybridizations and physiological and biochemical tests showed that strains MS1-3T and AS4-2 could be differentiated from their closest phylogenetic relatives both genotypically and phenotypically. It is proposed that the two isolates be classified as representatives of a novel species of Nocardia, Nocardia takedensis sp. nov. The type strain is MS1-3T (=NBRC 100417T=DSM 44801T); AS4-2 (=NBRC 100418=DSM 44802) is a reference strain.


2005 ◽  
Vol 55 (1) ◽  
pp. 427-431 ◽  
Author(s):  
Val Hall ◽  
Matthew D. Collins ◽  
Paul A. Lawson ◽  
Enevold Falsen ◽  
Brian I. Duerden

A previously undescribed filamentous, beaded, Gram-positive, rod-shaped bacterium was isolated from pus of a human dental abscess. Based on its cellular morphology and the results of biochemical testing the organism was tentatively identified as a member of the genus Actinomyces, but it did not correspond to any currently recognized species of this genus. Comparative 16S rRNA gene sequencing studies showed the bacterium represents a distinct subline within the genus Actinomyces, clustering within a group of species that includes Actinomyces bovis, the type species of the genus. Sequence divergence values of >8 % with other recognized species within this phylogenetic group clearly demonstrated that the organism represents a hitherto unknown species. Based on biochemical and molecular phylogenetic evidence, it is proposed that the unidentified organism recovered from a dental abscess be classified as a novel species, Actinomyces dentalis sp. nov. The type strain is R18165T (=CCUG 48064T=CIP 108337T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2671-2676 ◽  
Author(s):  
Ana I. Vela ◽  
María C. Gutiérrez ◽  
Enevold Falsen ◽  
Eduardo Rollán ◽  
Isabel Simarro ◽  
...  

An unusual Gram-negative, catalase- and oxidase-positive, rod-shaped bacterium isolated from different clinical samples from two monkeys (Callithrix geoffroyi) was characterized by phenotypic and molecular genetic methods. The micro-organism was tentatively identified as a Pseudomonas species on the basis of the results of cellular morphological and biochemical tests. Fatty acid studies confirmed this generic placement and comparative 16S rRNA gene sequencing studies demonstrated that the unknown isolates were phylogenetically closely related to each other (100 % sequence similarity) and were part of the ‘Pseudomonas fluorescens intrageneric cluster’. The novel bacterium, however, was distinguished from other phylogenetically related species of Pseudomonas by DNA–DNA hybridization studies and biochemical tests. On the basis of both phenotypic and phylogenetic findings, it is proposed that the novel Pseudomonas isolates are classified as Pseudomonas simiae sp. nov. The type strain of P. simiae is OLiT (=CCUG 50988T=CECT 7078T).


2010 ◽  
Vol 60 (4) ◽  
pp. 820-823 ◽  
Author(s):  
Kazuko Takada ◽  
Kazuhiko Hayashi ◽  
Yutaka Sato ◽  
Masatomo Hirasawa

Four Gram-stain-positive, catalase-negative, coccoid-shaped isolates were obtained from the oral cavities of wild boars and characterized by phenotypic and phylogenetic studies. On the results of biochemical tests, the organisms were tentatively identified as a streptococcal species. Comparative 16S rRNA gene sequencing studies confirmed that the organisms are members of the genus Streptococcus, with Streptococcus equi subsp. equi ATCC 33398T as their closest phylogenetic relative (94.7 % similarity). DNA–DNA hybridization analysis showed that the isolates displayed less than 10 % relatedness to Streptococcus equi subsp. equi DSM 20561T. From the phylogenetic and phenotypic evidence, the four isolates represent a novel species of the genus Streptococcus, for which the name Streptococcus dentapri sp. nov. (type strain NUM 1529T =JCM 15752T =DSM 21999T) is proposed.


Sign in / Sign up

Export Citation Format

Share Document