scholarly journals Non-Negative Data-Driven Mapping of Structural Connections in the Neonatal Brain

2020 ◽  
Author(s):  
E. Thompson ◽  
A.R. Mohammadi-Nejad ◽  
E.C. Robinson ◽  
M.F. Glasser ◽  
S. Jbabdi ◽  
...  

AbstractMapping connections in the neonatal brain can provide insight into the crucial early stages of neurodevelopment that shape brain organisation and lay the foundations for cognition and behaviour. Diffusion MRI and tractography provide unique opportunities for such explorations, through estimation of white matter bundles and brain connectivity. Atlas-based tractography protocols, i.e. a priori defined sets of masks and logical operations in a template space, have been commonly used in the adult brain to drive such explorations. However, rapid growth and maturation of the brain during early development make it challenging to ensure correspondence and validity of such atlas-based tractography approaches in the developing brain. An alternative can be provided by data-driven methods, which do not depend on predefined regions of interest. Here, we develop a novel data-driven framework to extract white matter bundles and their associated grey matter networks from neonatal tractography data, based on non-negative matrix factorisation that is inherently suited to the non-negative nature of structural connectivity data. We also develop a non-negative dual regression framework to map group-level components to individual subjects. Using in-silico simulations, we evaluate the accuracy of our approach in extracting connectivity components and compare with an alternative data-driven method, independent component analysis. We apply non-negative matrix factorisation to whole-brain connectivity obtained from publicly available datasets from the Developing Human Connectome Project, yielding grey matter components and their corresponding white matter bundles. We assess the validity and interpretability of these components against traditional tractography results and grey matter networks obtained from resting-state fMRI in the same subjects. We subsequently use them to generate a parcellation of the neonatal cortex using data from 323 new-born babies and we assess the robustness and reproducibility of this connectivity-driven parcellation.

2020 ◽  
Author(s):  
Michiel Cottaar ◽  
Matteo Bastiani ◽  
Nikhil Boddu ◽  
Matthew Glasser ◽  
Suzanne Haber ◽  
...  

1AbstractMany brain imaging studies aim to measure structural connectivity with diffusion tractography. However, biases in tractography data, particularly near the boundary between white matter and cortical grey matter can limit the accuracy of such studies. When seeding from the white matter, streamlines tend to travel parallel to the convoluted cortical surface, largely avoiding sulcal fundi and terminating preferentially on gyral crowns. When seeding from the cortical grey matter, streamlines generally run near the cortical surface until reaching deep white matter. These so-called “gyral biases” limit the accuracy and effective resolution of cortical structural connectivity profiles estimated by tractography algorithms, and they do not reflect the expected distributions of axonal densities seen in invasive tracer studies or stains of myelinated fibres. We propose an algorithm that concurrently models fibre density and orientation using a divergence-free vector field within gyral blades to encourage an anatomically-justified streamline density distribution along the cortical white/grey-matter boundary while maintaining alignment with the diffusion MRI estimated fibre orientations. Using in vivo data from the Human Connectome Project, we show that this algorithm reduces tractography biases. We compare the structural connectomes to functional connectomes from resting-state fMRI, showing that our model improves cross-modal agreement. Finally, we find that after parcellation the changes in the structural connectome are very minor with slightly improved interhemispheric connections (i.e, more homotopic connectivity) and slightly worse intrahemispheric connections when compared to tracers.


2021 ◽  
pp. jnnp-2020-323541
Author(s):  
Jessica L Panman ◽  
Vikram Venkatraghavan ◽  
Emma L van der Ende ◽  
Rebecca M E Steketee ◽  
Lize C Jiskoot ◽  
...  

ObjectiveProgranulin-related frontotemporal dementia (FTD-GRN) is a fast progressive disease. Modelling the cascade of multimodal biomarker changes aids in understanding the aetiology of this disease and enables monitoring of individual mutation carriers. In this cross-sectional study, we estimated the temporal cascade of biomarker changes for FTD-GRN, in a data-driven way.MethodsWe included 56 presymptomatic and 35 symptomatic GRN mutation carriers, and 35 healthy non-carriers. Selected biomarkers were neurofilament light chain (NfL), grey matter volume, white matter microstructure and cognitive domains. We used discriminative event-based modelling to infer the cascade of biomarker changes in FTD-GRN and estimated individual disease severity through cross-validation. We derived the biomarker cascades in non-fluent variant primary progressive aphasia (nfvPPA) and behavioural variant FTD (bvFTD) to understand the differences between these phenotypes.ResultsLanguage functioning and NfL were the earliest abnormal biomarkers in FTD-GRN. White matter tracts were affected before grey matter volume, and the left hemisphere degenerated before the right. Based on individual disease severities, presymptomatic carriers could be delineated from symptomatic carriers with a sensitivity of 100% and specificity of 96.1%. The estimated disease severity strongly correlated with functional severity in nfvPPA, but not in bvFTD. In addition, the biomarker cascade in bvFTD showed more uncertainty than nfvPPA.ConclusionDegeneration of axons and language deficits are indicated to be the earliest biomarkers in FTD-GRN, with bvFTD being more heterogeneous in disease progression than nfvPPA. Our data-driven model could help identify presymptomatic GRN mutation carriers at risk of conversion to the clinical stage.


2020 ◽  
Vol 4 (3) ◽  
pp. 871-890
Author(s):  
Arseny A. Sokolov ◽  
Peter Zeidman ◽  
Adeel Razi ◽  
Michael Erb ◽  
Philippe Ryvlin ◽  
...  

Bridging the gap between symmetric, direct white matter brain connectivity and neural dynamics that are often asymmetric and polysynaptic may offer insights into brain architecture, but this remains an unresolved challenge in neuroscience. Here, we used the graph Laplacian matrix to simulate symmetric and asymmetric high-order diffusion processes akin to particles spreading through white matter pathways. The simulated indirect structural connectivity outperformed direct as well as absent anatomical information in sculpting effective connectivity, a measure of causal and directed brain dynamics. Crucially, an asymmetric diffusion process determined by the sensitivity of the network nodes to their afferents best predicted effective connectivity. The outcome is consistent with brain regions adapting to maintain their sensitivity to inputs within a dynamic range. Asymmetric network communication models offer a promising perspective for understanding the relationship between structural and functional brain connectomes, both in normalcy and neuropsychiatric conditions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tatsuya Jitsuishi ◽  
Atsushi Yamaguchi

Abstract The intraparietal sulcus (IPS) in the posterior parietal cortex (PPC) is well-known as an interface for sensorimotor integration in visually guided actions. However, our understanding of the human neural network between the IPS and the cortical visual areas has been devoid of anatomical specificity. We here identified a distinctive association fiber tract “IPS-FG” to connect the IPS areas and the fusiform gyrus (FG), a high-level visual region, by white matter dissection and tractography. The major fiber bundles of this tract appeared to arise from the medial bank of IPS, in the superior parietal lobule (SPL), and project to the FG on the ventral temporal cortex (VTC) in post-mortem brains. This tract courses vertically at the temporo-parieto-occipital (TPO) junction where several fiber tracts intersect to connect the dorsal-to-ventral cortical regions, including the vertical occipital fasciculus (VOF). We then analyzed the structural connectivity of this tract with diffusion-MRI (magnetic resonance imaging) tractography. The quantitative tractography analysis revealed the major streamlines of IPS-FG interconnect the posterior IPS areas (e.g., IP1, IPS1) with FG (e.g., TF, FFC, VVC, PHA2, PIT) on the Human Connectome Project multimodal parcellation atlas (HCP MMP 1.0). Since the fronto-parietal network, including the posterior IPS areas, is recruited by multiple cognitive demands, the IPS-FG could play a role in the visuomotor integration as well as the top-down modulation of various cognitive functions reciprocally.


2013 ◽  
Vol 19 (9) ◽  
pp. 1161-1168 ◽  
Author(s):  
M Bozzali ◽  
B Spanò ◽  
GJM Parker ◽  
G Giulietti ◽  
M Castelli ◽  
...  

Background: Brain disconnection plays a major role in determining cognitive disabilities in multiple sclerosis (MS). We recently developed a novel diffusion-weighted magnetic resonance imaging (DW-MRI) tractography approach, namely anatomical connectivitity mapping (ACM), that quantifies structural brain connectivity. Objective: Use of ACM to assess structural connectivity modifications in MS brains and ascertain their relationship with the patients’ Paced-Auditory-Serial-Addition-Test (PASAT) scores. Methods: Relapsing–remitting MS (RRMS) patients ( n = 25) and controls ( n = 25) underwent MRI at 3T, including conventional images, T1-weighted volumes and DW-MRI. Volumetric scans were coregistered to fractional anisotropy (FA) images, to obtain parenchymal FA maps for both white and grey matter. We initiated probabilistic tractography from all parenchymal voxels, obtaining ACM maps by counting the number of streamlines passing through each voxel, then normalizing by the total number of streamlines initiated. The ACM maps were transformed into standard space, for statistical use. Results: RRMS patients had reduced grey matter volume and FA, consistent with previous literature. Also, we showed reduced ACM in the thalamus and in the head of the caudate nucleus, bilaterally. In our RRMS patients, ACM was associated with PASAT scores in the corpus callosum, right hippocampus and cerebellum. Conclusions: ACM opens a new perspective, clarifying the contribution of anatomical brain disconnection to clinical disabilities in MS.


2018 ◽  
Author(s):  
J. Zimmermann ◽  
J.G. Griffiths ◽  
A.R. McIntosh

AbstractThe unique mapping of structural and functional brain connectivity (SC, FC) on cognition is currently not well understood. It is not clear whether cognition is mapped via a global connectome pattern or instead is underpinned by several sets of distributed connectivity patterns. Moreover, we also do not know whether the pattern of SC and of FC that underlie cognition are overlapping or distinct. Here, we study the relationship between SC and FC and an array of psychological tasks in 609 subjects from the Human Connectome Project (HCP). We identified several sets of connections that each uniquely map onto different aspects of cognitive function. We found a small number of distributed SC and a larger set of cortico-cortical and cortico-subcortical FC that express this association. Importantly, SC and FC each show unique and distinct patterns of variance across subjects and differential relationships to cognition. The results suggest that a complete understanding of connectome underpinnings of cognition calls for a combination of the two modalities.Significance StatementStructural connectivity (SC), the physical white-matter inter-regional pathways in the brain, and functional connectivity (FC), the temporal co-activations between activity of brain regions, have each been studied extensively. Little is known, however, about the distribution of variance in connections as they relate to cognition. Here, in a large sample of subjects (N = 609), we showed that two sets of brain-behavioural patterns capture the correlations between SC, and FC with a wide range of cognitive tasks, respectively. These brain-behavioural patterns reveal distinct sets of connections within the SC and the FC network and provide new evidence that SC and FC each provide unique information for cognition.


2020 ◽  
pp. 1-15
Author(s):  
Tommy Boshkovski ◽  
Ljupco Kocarev ◽  
Julien Cohen-Adad ◽  
Bratislav Mišić ◽  
Stéphane Lehéricy ◽  
...  

Myelin plays a crucial role in how well information travels between brain regions. Complementing the structural connectome, obtained with diffusion MRI tractography, with a myelin-sensitive measure could result in a more complete model of structural brain connectivity and give better insight into white-matter myeloarchitecture. In this work we weight the connectome by the longitudinal relaxation rate (R1), a measure sensitive to myelin, and then we assess its added value by comparing it with connectomes weighted by the number of streamlines (NOS). Our analysis reveals differences between the two connectomes both in the distribution of their weights and the modular organization. Additionally, the rank-based analysis shows that R1 can be used to separate transmodal regions (responsible for higher-order functions) from unimodal regions (responsible for low-order functions). Overall, the R1-weighted connectome provides a different perspective on structural connectivity taking into account white matter myeloarchitecture.


2020 ◽  
Author(s):  
Elvisha Dhamala ◽  
Keith W. Jamison ◽  
Abhishek Jaywant ◽  
Sarah Dennis ◽  
Amy Kuceyeski

SummaryHow white matter pathway integrity and neural co-activation patterns in the brain relate to complex cognitive functions remains a mystery in neuroscience. Here, we integrate neuroimaging, connectomics, and machine learning approaches to explore how multimodal brain connectivity relates to cognition. Specifically, we evaluate whether integrating functional and structural connectivity improves prediction of individual crystallised and fluid abilities in 415 unrelated healthy young adults from the Human Connectome Project. Our primary results are two-fold. First, we demonstrate that integrating functional and structural information – at both a model input or output level – significantly outperforms functional or structural connectivity alone to predict individual verbal/language skills and fluid reasoning/executive function. Second, we show that distinct pairwise functional and structural connections are important for these predictions. In a secondary analysis, we find that structural connectivity derived from deterministic tractography is significantly better than structural connectivity derived from probabilistic tractography to predict individual cognitive abilities.


2019 ◽  
Author(s):  
Roza G. Bayrak ◽  
Xuan Wang ◽  
Kurt G. Schilling ◽  
Jasmine M. Greer ◽  
Colin B. Hansen ◽  
...  

AbstractReproducible identification of white matter tracts across subjects is essential for the study of structural connectivity of the human brain. The key challenges are anatomical differences between subjects and human rater subjectivity in labeling. Labeling white matter regions of interest presents many challenges due to the need to integrate both local and global information. Clearly communicating the human/manual processes to capture this information is cumbersome, yet essential to lay a solid foundation for comprehensive atlases. The state-of-the-art for white matter atlas is the single population-averaged Johns Hopkins Eve atlas. A critical bottleneck with the Eve atlas framework is that manual labeling time is extensive and peripheral white matter regions are conservatively labeled. In this work, we developed protocols that will facilitate manual virtual dissection of white matter pathways, with the goals to be anatomically accurate, intuitive, reproducible, and act as an initial stage to build an amenable knowledge base of neuroanatomical regions. We analyzed reproducibility of the fiber bundles and variability of human raters using DICE correlation coefficient, intraclass correlation coefficient, and root mean squared error. The protocols at their initial stage have shown promising results on both typical 3T research acquisition Baltimore Longitudinal Study of Aging and high-acquisition quality Human Connectome Project datasets. The TractEM manual labeling protocols allow for reconstruction of reproducible subject-specific fiber bundles across the brain. The protocols and sample results have been made available in open source to improve generalizability and reliability in collaboration.


2018 ◽  
Author(s):  
Joseph E. Knox ◽  
Kameron Decker Harris ◽  
Nile Graddis ◽  
Jennifer D. Whitesell ◽  
Hongkui Zeng ◽  
...  

AbstractKnowledge of mesoscopic brain connectivity is important for understanding inter- and intra-region information processing. Models of structural connectivity are typically constructed and analyzed with the assumption that regions are homogeneous. We instead use the Allen Mouse Brain Connectivity Atlas to construct a model of whole brain connectivity at the scale of 100 µm voxels. The dataset used consists of 366 anterograde tracing experiments in wild type C7BL/6 mice, mapping fluorescently-labeled neuronal projections brain-wide. Inferring spatial connectivity with this dataset remains underdetermined, since the approximately 2 × 105 source voxels outnumber the number of experiments. To address this, we assume that connection patterns and strengths vary smoothly across major brain divisions. We model the connectivity at each voxel as a radial basis kernel-weighted average of the projection patterns of nearby injections. The voxel model outperforms a previous regional model in predicting held-out experiments and compared to a human-curated dataset. This voxel-scale model of the mouse connectome permits researchers to extend their previous analyses of structural connectivity to unprecedented levels of resolution, and allows for comparison with functional imaging and other datasets.


Sign in / Sign up

Export Citation Format

Share Document