scholarly journals Asymmetric high-order anatomical brain connectivity sculpts effective connectivity

2020 ◽  
Vol 4 (3) ◽  
pp. 871-890
Author(s):  
Arseny A. Sokolov ◽  
Peter Zeidman ◽  
Adeel Razi ◽  
Michael Erb ◽  
Philippe Ryvlin ◽  
...  

Bridging the gap between symmetric, direct white matter brain connectivity and neural dynamics that are often asymmetric and polysynaptic may offer insights into brain architecture, but this remains an unresolved challenge in neuroscience. Here, we used the graph Laplacian matrix to simulate symmetric and asymmetric high-order diffusion processes akin to particles spreading through white matter pathways. The simulated indirect structural connectivity outperformed direct as well as absent anatomical information in sculpting effective connectivity, a measure of causal and directed brain dynamics. Crucially, an asymmetric diffusion process determined by the sensitivity of the network nodes to their afferents best predicted effective connectivity. The outcome is consistent with brain regions adapting to maintain their sensitivity to inputs within a dynamic range. Asymmetric network communication models offer a promising perspective for understanding the relationship between structural and functional brain connectomes, both in normalcy and neuropsychiatric conditions.

2020 ◽  
pp. 1-15
Author(s):  
Tommy Boshkovski ◽  
Ljupco Kocarev ◽  
Julien Cohen-Adad ◽  
Bratislav Mišić ◽  
Stéphane Lehéricy ◽  
...  

Myelin plays a crucial role in how well information travels between brain regions. Complementing the structural connectome, obtained with diffusion MRI tractography, with a myelin-sensitive measure could result in a more complete model of structural brain connectivity and give better insight into white-matter myeloarchitecture. In this work we weight the connectome by the longitudinal relaxation rate (R1), a measure sensitive to myelin, and then we assess its added value by comparing it with connectomes weighted by the number of streamlines (NOS). Our analysis reveals differences between the two connectomes both in the distribution of their weights and the modular organization. Additionally, the rank-based analysis shows that R1 can be used to separate transmodal regions (responsible for higher-order functions) from unimodal regions (responsible for low-order functions). Overall, the R1-weighted connectome provides a different perspective on structural connectivity taking into account white matter myeloarchitecture.


2021 ◽  
Author(s):  
Yiran Wei ◽  
Chao Li ◽  
Stephen John Price

AbstractBrain tumors are characterised by infiltration along the white matter tracts, posing significant challenges to precise treatment. Mounting evidence shows that an infiltrating tumor can interfere with the brain network diffusely. Therefore, quantifying structural connectivity has potential to identify tumor invasion and stratify patients more accurately. The tract-based statistics (TBSS) is widely used to measure the white matter integrity. This voxel-wise method, however, cannot directly quantify the connectivity of brain regions. Tractography is a fiber tracking approach, which has been widely used to quantify brain connectivity. However, the performance of tractography on the brain with tumors is complicated by the tumor mass effect. A robust method of quantifying the structural connectivity strength in brain tumor patients is still lacking.Here we propose a method which could provide robust estimation of tract strength for brain tumor patients. Specifically, we firstly construct an unbiased tract template in healthy subjects using tractography. The voxel projection of TBSS is employed to quantify the tract connectivity in patients, using the location of each tract fiber from the template. To further improve the standard TBSS, we propose an approach of iterative projection of tract voxels guided by the tract orientation measured using the voxel-wise eigenvectors. Compared to state-of-the-art tractography, our approach is more sensitive in reflecting more functional relevance. Further, the different extent of network disruption revealed by our approach correspond to the clinical prior knowledge of tumor histology. The proposed method could provide a robust estimation of the structural connectivity for brain tumor patients.


2018 ◽  
Author(s):  
Lena K. L. Oestreich ◽  
Roshini Randeniya ◽  
Marta I. Garrido

AbstractAuditory prediction errors, i.e. the mismatch between predicted and actual auditory input, are generated by a hierarchical functional network of cortical sources. This network is also interconnected by auditory white matter pathways. Hence it would be reasonable to assume that these structural and functional networks are quantitatively related, which is what the present study set out to investigate. Specifically, whether structural connectivity of auditory white matter pathways enables effective connectivity of auditory prediction error generation. Eighty-nine participants underwent diffusion weighted magnetic resonance imaging. Anatomically-constrained tractography was used to extract auditory white matter pathways, namely the bilateral arcuate fasciculus, the inferior occipito-frontal fasciculi (IOFF), and the auditory interhemispheric pathway, from which Apparent Fibre Density (AFD) was calculated. The same participants also underwent a stochastic oddball paradigm, which was used to elicit prediction error responses, while undergoing electroencephalographic recordings. Dynamic causal modelling (DCM) was used to investigate the effective connectivity of auditory prediction error generation in brain regions interconnected by the above mentioned auditory white matter pathways. Brain areas interconnected by all auditory white matter pathways best explained the dynamics of auditory prediction error responses. Furthermore, AFD in the right IOFF and right arcuate fasciculus significantly predicted the effective connectivity parameters underlying auditory prediction error generation. In conclusion, the generation of auditory prediction errors within an effectively connected, fronto-temporal network was found to be facilitated by the structural connectivity of auditory white matter pathways. These findings build upon the notion that structural connectivity facilitates dynamic interactions within brain regions that are effectively connected.Significance statementThe brain continuously generates and updates hypotheses that predict forthcoming sensory input. Within the auditory domain, it has repeatedly been reported that these predictions about the auditory environment are facilitated by specific functional cortical connections. These functionally connected brain regions are also structurally connected via auditory white matter pathways. For the first time, this study provides quantitative evidence for a structural basis along which this functional network of auditory prediction error generation operates. This finding provides evidence for the notion that the functional connectivity of dynamically interacting brain areas is facilitated by structural connectivity amongst these brain areas.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Arian Ashourvan ◽  
Preya Shah ◽  
Adam Pines ◽  
Shi Gu ◽  
Christopher W. Lynn ◽  
...  

AbstractA major challenge in neuroscience is determining a quantitative relationship between the brain’s white matter structural connectivity and emergent activity. We seek to uncover the intrinsic relationship among brain regions fundamental to their functional activity by constructing a pairwise maximum entropy model (MEM) of the inter-ictal activation patterns of five patients with medically refractory epilepsy over an average of ~14 hours of band-passed intracranial EEG (iEEG) recordings per patient. We find that the pairwise MEM accurately predicts iEEG electrodes’ activation patterns’ probability and their pairwise correlations. We demonstrate that the estimated pairwise MEM’s interaction weights predict structural connectivity and its strength over several frequencies significantly beyond what is expected based solely on sampled regions’ distance in most patients. Together, the pairwise MEM offers a framework for explaining iEEG functional connectivity and provides insight into how the brain’s structural connectome gives rise to large-scale activation patterns by promoting co-activation between connected structures.


2020 ◽  
Vol 65 (1) ◽  
pp. 23-32
Author(s):  
Mehdi Rajabioun ◽  
Ali Motie Nasrabadi ◽  
Mohammad Bagher Shamsollahi ◽  
Robert Coben

AbstractBrain connectivity estimation is a useful method to study brain functions and diagnose neuroscience disorders. Effective connectivity is a subdivision of brain connectivity which discusses the causal relationship between different parts of the brain. In this study, a dual Kalman-based method is used for effective connectivity estimation. Because of connectivity changes in autism, the method is applied to autistic signals for effective connectivity estimation. For method validation, the dual Kalman based method is compared with other connectivity estimation methods by estimation error and the dual Kalman-based method gives acceptable results with less estimation errors. Then, connectivities between active brain regions of autistic and normal children in the resting state are estimated and compared. In this simulation, the brain is divided into eight regions and the connectivity between regions and within them is calculated. It can be concluded from the results that in the resting state condition the effective connectivity of active regions is decreased between regions and is increased within each region in autistic children. In another result, by averaging the connectivity between the extracted active sources of each region, the connectivity between the left and right of the central part is more than that in other regions and the connectivity in the occipital part is less than that in others.


2018 ◽  
Author(s):  
J. Zimmermann ◽  
J.G. Griffiths ◽  
A.R. McIntosh

AbstractThe unique mapping of structural and functional brain connectivity (SC, FC) on cognition is currently not well understood. It is not clear whether cognition is mapped via a global connectome pattern or instead is underpinned by several sets of distributed connectivity patterns. Moreover, we also do not know whether the pattern of SC and of FC that underlie cognition are overlapping or distinct. Here, we study the relationship between SC and FC and an array of psychological tasks in 609 subjects from the Human Connectome Project (HCP). We identified several sets of connections that each uniquely map onto different aspects of cognitive function. We found a small number of distributed SC and a larger set of cortico-cortical and cortico-subcortical FC that express this association. Importantly, SC and FC each show unique and distinct patterns of variance across subjects and differential relationships to cognition. The results suggest that a complete understanding of connectome underpinnings of cognition calls for a combination of the two modalities.Significance StatementStructural connectivity (SC), the physical white-matter inter-regional pathways in the brain, and functional connectivity (FC), the temporal co-activations between activity of brain regions, have each been studied extensively. Little is known, however, about the distribution of variance in connections as they relate to cognition. Here, in a large sample of subjects (N = 609), we showed that two sets of brain-behavioural patterns capture the correlations between SC, and FC with a wide range of cognitive tasks, respectively. These brain-behavioural patterns reveal distinct sets of connections within the SC and the FC network and provide new evidence that SC and FC each provide unique information for cognition.


2018 ◽  
Author(s):  
Damian Brzyski ◽  
Marta Karas ◽  
Beau Ances ◽  
Mario Dzemidzic ◽  
Joaquin Goni ◽  
...  

AbstractOne of the challenging problems in the brain imaging research is a principled incorporation of information from different imaging modalities in association studies. Frequently, data from each modality is analyzed separately using, for instance, dimensionality reduction techniques, which result in a loss of mutual information. We propose a novel regularization method, griPEER (generalized ridgified Partially Empirical Eigenvectors for Regression) to estimate the association between the brain structure features and a scalar outcome within the generalized linear regression framework. griPEER provides a principled approach to use external information from the structural brain connectivity to improve the regression coefficient estimation. Our proposal incorporates a penalty term, derived from the structural connectivity Laplacian matrix, in the penalized generalized linear regression. We address both theoretical and computational issues and show that our method is robust to the incomplete information about the structural brain connectivity. We also provide a significance testing procedure for performing inference on the estimated coefficients in this model. griPEER is evaluated in extensive simulation studies and it is applied in classification of the HIV+ and HIV- individuals.


2021 ◽  
Author(s):  
Alessandro Crimi

The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function. Or simply, it can be used to find novel biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re-weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of an autoregressive model constrained by the structural connectivity prior. The model has been designed to also include indirect connections, allowing to split direct and indirect components in the functional connectivity, and it can be used with raw and deconvoluted BOLD signal.The derived representation of dependencies was compared to the well known dynamic causal model, giving results closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the functional interactions in the community detection task, while maintaining the original structural organization, and obtaining a better discrimination in the case-control classification task.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mingyan Li ◽  
Chai Ji ◽  
Weifeng Xuan ◽  
Weijun Chen ◽  
Ying Lv ◽  
...  

Objectives: The aim of the study is to demonstrate the characteristic of motor development and MRI changes of related brain regions in preterm infants with different iron statuses and to determine whether the daily iron supplementation can promote motor development for preterm in early infancy.Methods: The 63 preterm infants were grouped into non-anemia with higher serum ferritin (NA-HF) group and anemia with lower serum ferritin (A-LF) group according to their lowest serum Hb level in the neonatal period as well as the sFer at 3 months old. Forty-nine participants underwent MRI scans and Infant Neurological International Battery (INFANIB) at their 3 months. At 6 months of corrected age, these infants received the assessment of Peabody Developmental Motor Scales (PDMS) after 2 mg/kg/day iron supplementation.Results: In total, 19 preterm infants were assigned to the NA-HF group while 44 preterm infants to the A-LF groups. The serum ferritin (sFer) level of the infants in A-LF group was lower than that in NA-HF group (44.0 ± 2.8 mg/L vs. 65.1 ± 2.8 mg/L, p < 0.05) and was with poorer scores of INFANIB (66.8 ± 0.9 vs. 64.4 ± 0.6, p < 0.05) at 3 months old. The structural connectivity between cerebellum and ipsilateral thalamus in the NA-HF group was significantly stronger than that in the A-LF group (n = 17, 109.76 ± 23.8 vs. n = 32, 70.4 ± 6.6, p < 0.05). The decreased brain structural connectivity was positively associated with the scores of PDMS (r = 0.347, p < 0.05). After 6 months of routine iron supplementation, no difference in Hb, MCV, MCHC, RDW, and sFer was detected between A-LF and NA-HF groups as well as the motor scores of PDMS-2 assessments.Conclusion: Iron status at early postnatal period of preterm infant is related to motor development and the enrichment of brain structural connectivity. The decrease in brain structural connectivity is related to the motor delay. After supplying 2 mg/kg of iron per day for 6 months, the differences in the iron status and motor ability between the A-LF and NA-HF groups were eliminated.


2020 ◽  
Vol 4 (3) ◽  
pp. 761-787 ◽  
Author(s):  
Katharina Glomb ◽  
Emeline Mullier ◽  
Margherita Carboni ◽  
Maria Rubega ◽  
Giannarita Iannotti ◽  
...  

Recently, EEG recording techniques and source analysis have improved, making it feasible to tap into fast network dynamics. Yet, analyzing whole-cortex EEG signals in source space is not standard, partly because EEG suffers from volume conduction: Functional connectivity (FC) reflecting genuine functional relationships is impossible to disentangle from spurious FC introduced by volume conduction. Here, we investigate the relationship between white matter structural connectivity (SC) and large-scale network structure encoded in EEG-FC. We start by confirming that FC (power envelope correlations) is predicted by SC beyond the impact of Euclidean distance, in line with the assumption that SC mediates genuine FC. We then use information from white matter structural connectivity in order to smooth the EEG signal in the space spanned by graphs derived from SC. Thereby, FC between nearby, structurally connected brain regions increases while FC between nonconnected regions remains unchanged, resulting in an increase in genuine, SC-mediated FC. We analyze the induced changes in FC, assessing the resemblance between EEG-FC and volume-conduction- free fMRI-FC, and find that smoothing increases resemblance in terms of overall correlation and community structure. This result suggests that our method boosts genuine FC, an outcome that is of interest for many EEG network neuroscience questions.


Sign in / Sign up

Export Citation Format

Share Document