scholarly journals Rapamycin-dependent delocalization as a novel tool to reveal protein-protein interactions in plants

2020 ◽  
Author(s):  
Joanna Winkler ◽  
Evelien Mylle ◽  
Andreas De Meyer ◽  
Benjamin Pavie ◽  
Julie Merchie ◽  
...  

AbstractIdentifying protein-protein interactions (PPI) is crucial to understand any type of biological process. Many PPI tools are available, yet only some function within the context of a plant cell. Narrowing down even further, only few PPI tools allow visualizing higher order interactions. Here, we present a novel and conditional in vivo PPI tool for plant research. Knocksideways in plants (KSP) uses the ability of rapamycin to alter the localization of a bait protein and its interactors via the heterodimerization of FKBP and FRB domains. KSP is inherently free from many limitations, which other PPI systems hold. It is an in vivo tool, it is flexible concerning the orientation of protein tagging as long as this does not interfere with the interaction and it is compatible with a broad range of fluorophores. KSP is also a conditional tool and therefore does not require additional controls. The interactions can be quantified and in high throughput by the scripts that we provide. Finally, we demonstrate that KSP can visualize higher-order interactions. It is therefore a versatile tool, complementing the PPI methods field with unique characteristics and applications.

2021 ◽  
Author(s):  
Zhong-Qiu Yu ◽  
Xiao-Man Liu ◽  
Dan Zhao ◽  
Dan-Dan Xu ◽  
Li-Lin Du

Protein-protein interactions are vital for executing nearly all cellular processes. To facilitate the detection of protein-protein interactions in living cells of the fission yeast Schizosaccharomyces pombe, here we present an efficient and convenient method termed the Pil1 co-tethering assay. In its basic form, we tether a bait protein to mCherry-tagged Pil1, which forms cortical filamentary structures, and examine whether a GFP-tagged prey protein colocalizes with the bait. We demonstrate that this assay is capable of detecting pairwise protein-protein interactions of cytosolic proteins and nuclear proteins. Furthermore, we show that this assay can be used for detecting not only binary protein-protein interactions, but also ternary and quaternary protein-protein interactions. Using this assay, we systematically characterized the protein-protein interactions in the Atg1 complex and in the phosphatidylinositol 3-kinase (PtdIns3K) complexes and found that Atg38 is incorporated into the PtdIns3K complex I via an Atg38-Vps34 interaction. Our data show that this assay is a useful and versatile tool and should be added to the routine toolbox of fission yeast researchers.


2018 ◽  
Author(s):  
Michael A. Skinnider ◽  
Nichollas E. Scott ◽  
Anna Prudova ◽  
Nikolay Stoynov ◽  
R. Greg Stacey ◽  
...  

SummaryCellular processes arise from the dynamic organization of proteins in networks of physical interactions. Mapping the complete network of biologically relevant protein-protein interactions, the interactome, has therefore been a central objective of high-throughput biology. Yet, because widely used methods for high-throughput interaction discovery rely on heterologous expression or genetically manipulated cell lines, the dynamics of protein interactions across physiological contexts are poorly understood. Here, we use a quantitative proteomic approach combining protein correlation profiling with stable isotope labelling of mammals (PCP SILAM) to map the interactomes of seven mouse tissues. The resulting maps provide the first proteome-scale survey of interactome dynamics across mammalian tissues, revealing over 27,000 unique interactions with an accuracy comparable to the highest-quality human screens. We identify systematic suppression of cross-talk between the evolutionarily ancient housekeeping interactome and younger, tissue-specific modules. Rewiring of protein interactions across tissues is widespread, and is poorly predicted by gene expression or coexpression. Rewired proteins are tightly regulated by multiple cellular mechanisms and implicated in disease. Our study opens up new avenues to uncover regulatory mechanisms that shape in vivo interactome responses to physiological and pathophysiological stimuli in mammalian systems.


2012 ◽  
Vol 58 (11) ◽  
pp. 1241-1257 ◽  
Author(s):  
Roberto Velasco-García ◽  
Rocío Vargas-Martínez

Many of the functions fulfilled by proteins in the cell require specific protein–protein interactions (PPI). During the last decade, the use of high-throughput experimental technologies, primarily based on the yeast 2-hybrid system, generated extensive data currently located in public databases. This information has been used to build interaction networks for different species. Unfortunately, due to the nature of the yeast 2-hybrid system, these databases contain many false positives and negatives, thus they require purging. A method for confirming these PPI is to test them using a technique that operates in vivo and detects binary PPI. This article comprises an overview of the study of PPI and describes the main techniques that have been used to identify bacterial PPI, prioritizing those that can be used for their verification, and it also mentions a number of PPI that have been identified or confirmed using these methods.


2021 ◽  
Author(s):  
Jason R Kroll ◽  
Sanne Remmelzwaal ◽  
Mike Boxem

Interactions among proteins are fundamental for life and determining whether two particular proteins physically interact can be essential for fully understanding a protein's function. We present C. elegans light-induced co-clustering (CeLINC), an optical binary protein-protein interaction assay to determine whether two proteins interact in vivo. Based on CRY2/CIB1 light-dependent oligomerization, CeLINC can rapidly and unambiguously identify protein-protein interactions between pairs of fluorescently tagged proteins. A fluorescently tagged bait protein is captured using a nanobody directed against the fluorescent protein (GFP or mCherry) and brought into artificial clusters within the cell. Co-localization of a fluorescently tagged prey protein in the cluster indicates a protein interaction. We tested the system with an array of positive and negative reference protein pairs. Assay performance was extremely robust with no false positives detected in the negative reference pairs. We then used the system to test for interactions among apical and basolateral polarity regulators. We confirmed interactions seen between PAR-6, PKC-3, and PAR-3, but observed no physical interactions among the basolateral Scribble module proteins LET-413, DLG-1, and LGL-1. We have generated a plasmid toolkit that allows use of custom promoters or CRY2 variants to promote flexibility of the system. The CeLINC assay is a powerful and rapid technique that can be widely applied in C. elegans due to the universal plasmids that can be used with existing fluorescently tagged strains without need for additional cloning or genetic modification of the genome.


Genetics ◽  
2021 ◽  
Author(s):  
Jason R Kroll ◽  
Sanne Remmelzwaal ◽  
Mike Boxem

Abstract Interactions among proteins are fundamental for life and determining whether two particular proteins physically interact can be essential for fully understanding a protein’s function. We present C. elegans light-induced co-clustering (CeLINC), an optical binary protein-protein interaction assay to determine whether two proteins interact in vivo. Based on CRY2/CIB1 light-dependent oligomerization, CeLINC can rapidly and unambiguously identify protein-protein interactions between pairs of fluorescently tagged proteins. A fluorescently tagged bait protein is captured using a nanobody directed against the fluorescent protein (GFP or mCherry) and brought into artificial clusters within the cell. Co-localization of a fluorescently tagged prey protein in the cluster indicates a protein interaction. We tested the system with an array of positive and negative reference protein pairs. Assay performance was extremely robust with no false positives detected in the negative reference pairs. We then used the system to test for interactions among apical and basolateral polarity regulators. We confirmed interactions seen between PAR-6, PKC-3, and PAR-3, but observed no physical interactions among the basolateral Scribble module proteins LET-413, DLG-1, and LGL-1. We have generated a plasmid toolkit that allows use of custom promoters or CRY2 variants to promote flexibility of the system. The CeLINC assay is a powerful and rapid technique that can be widely applied in C. elegans due to the universal plasmids that can be used with existing fluorescently tagged strains without need for additional cloning or genetic modification of the genome.


2021 ◽  
Author(s):  
Zhong-Qiu Yu ◽  
Xiao-Man Liu ◽  
Dan Zhao ◽  
Dan-Dan Xu ◽  
Li-Lin Du

AbstractProtein-protein interactions are vital for executing nearly all cellular processes. To facilitate the detection of protein-protein interactions in living cells of the fission yeast Schizosaccharomyces pombe, here we present an efficient and convenient method termed the Pil1 co-tethering assay. In its basic form, we tether a bait protein to mCherry-tagged Pil1, which forms cortical filamentary structures, and examine whether a GFP-tagged prey protein colocalizes with the bait. We demonstrate that this assay is capable of detecting pairwise protein-protein interactions of cytosolic proteins, transmembrane proteins, and nuclear proteins. Furthermore, we show that this assay can be used for detecting not only binary protein-protein interactions, but also ternary and quaternary protein-protein interactions. Using this assay, we systematically characterized the protein-protein interactions in the Atg1 complex and in the phosphatidylinositol 3-kinase (PtdIns3K) complexes and found that Atg38 is incorporated into the PtdIns3K complex I via an Atg38-Vps34 interaction. Our data show that this assay is a useful and versatile tool and should be added to the routine toolbox of fission yeast researchers.


2020 ◽  
Author(s):  
James Frederich ◽  
Ananya Sengupta ◽  
Josue Liriano ◽  
Ewa A. Bienkiewicz ◽  
Brian G. Miller

Fusicoccin A (FC) is a fungal phytotoxin that stabilizes protein–protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. In recent years, FC has emerged as an important chemical probe of human 14-3-3 PPIs implicated in cancer and neurological diseases. These previous studies have established the structural requirements for FC-induced stabilization of 14-3-3·client phosphoprotein complexes; however, the effect of different 14-3-3 isoforms on FC activity has not been systematically explored. This is a relevant question for the continued development of FC variants because there are seven distinct isoforms of 14-3-3 in humans. Despite their remarkable sequence and structural similarities, a growing body of experimental evidence supports both tissue-specific expression of 14-3-3 isoforms and isoform-specific functions <i>in vivo</i>. Herein, we report the isoform-specificity profile of FC <i>in vitro</i>using recombinant human 14-3-3 isoforms and a focused library of fluorescein-labeled hexaphosphopeptides mimicking the C-terminal 14-3-3 recognition domains of client phosphoproteins targeted by FC in cell culture. Our results reveal modest isoform preferences for individual client phospholigands and demonstrate that FC differentially stabilizes PPIs involving 14-3-3s. Together, these data provide strong motivation for the development of non-natural FC variants with enhanced selectivity for individual 14-3-3 isoforms.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 376
Author(s):  
Norhidayah Azmi ◽  
Nurulhasanah Othman

Amoebiasis is caused by Entamoeba histolytica and ranked second for parasitic diseases causing death after malaria. E. histolytica membrane and cytosolic proteins play important roles in the pathogenesis. Our previous study had shown several cytosolic proteins were found in the membrane fraction. Therefore, this study aimed to quantify the differential abundance of membrane and cytosolic proteins in membrane versus cytosolic fractions and analyze their predicted functions and interaction. Previous LC-ESI-MS/MS data were analyzed by PERSEUS software for the differentially abundant proteins, then they were classified into their functional annotations and the protein networks were summarized using PantherDB and STRiNG, respectively. The results showed 24 (44.4%) out of the 54 proteins that increased in abundance were membrane proteins and 30 were cytosolic proteins. Meanwhile, 45 cytosolic proteins were found to decrease in abundance. Functional analysis showed differential abundance proteins involved in the molecular function, biological process, and cellular component with 18.88%, 33.04% and, 48.07%, respectively. The STRiNG server predicted that the decreased abundance proteins had more protein–protein network interactions compared to increased abundance proteins. Overall, this study has confirmed the presence of the differentially abundant membrane and cytosolic proteins and provided the predictive functions and interactions between them.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 159
Author(s):  
Tina Schönberger ◽  
Joachim Fandrey ◽  
Katrin Prost-Fingerle

Hypoxia is a key characteristic of tumor tissue. Cancer cells adapt to low oxygen by activating hypoxia-inducible factors (HIFs), ensuring their survival and continued growth despite this hostile environment. Therefore, the inhibition of HIFs and their target genes is a promising and emerging field of cancer research. Several drug candidates target protein–protein interactions or transcription mechanisms of the HIF pathway in order to interfere with activation of this pathway, which is deregulated in a wide range of solid and liquid cancers. Although some inhibitors are already in clinical trials, open questions remain with respect to their modes of action. New imaging technologies using luminescent and fluorescent methods or nanobodies to complement widely used approaches such as chromatin immunoprecipitation may help to answer some of these questions. In this review, we aim to summarize current inhibitor classes targeting the HIF pathway and to provide an overview of in vitro and in vivo techniques that could improve the understanding of inhibitor mechanisms. Unravelling the distinct principles regarding how inhibitors work is an indispensable step for efficient clinical applications and safety of anticancer compounds.


Sign in / Sign up

Export Citation Format

Share Document