scholarly journals Filamentous Bacteriophage Delay Healing of Pseudomonas-Infected Wounds

Author(s):  
Michelle S. Bach ◽  
Christiaan R. de Vries ◽  
Johanna M. Sweere ◽  
Medeea Popescu ◽  
Jonas D. Van Belleghem ◽  
...  

AbstractWe have identified a novel role for filamentous bacteriophage in the delayed healing associated with chronic Pseudomonas aeruginosa (Pa) wound infections. In a mouse model of chronic Pa-infected wounds, Pf, a filamentous phage produced by Pa, impaired keratinocyte migration, prevented wound re-epithelialization, and delayed healing in both the absence and presence of live bacteria. Mechanistically, the immune response to Pf phage produces soluble factors that impair keratinocyte migration and delay wound re-epithelialization. In a prospective cohort study of 113 human patients, Pa was detected in 36 patients and 25 of these (69%) were positive for Pf phage. Pf(+) wounds were significantly older and more likely to increase in size over time than Pf(-) wounds. Together, these data implicate Pf in the delayed wound healing associated with Pa infection. We propose that Pf phage may have potential as a biomarker and therapeutic target for delayed wound healing.

2021 ◽  
Vol 26 (Sup9) ◽  
pp. S26-S36
Author(s):  
Luxmi Dhoonmoon ◽  
Hayley Turner-Dobbin ◽  
Karen Staines

Wound infection is an important complicating factor in the wound healing process, and infections can be even more complex and difficult to manage in the case of wounds with biofilms. Silver has been used to treat infected wounds for a long time now, and the strength of the product depends on the number of Ag ions, where the greater the number of ions, the higher and faster the reactivity is. Ag Oxysalts technology—used in 3M Kerracontact Ag dressing—has three times more ions than standard silver dressings. The technology also does not show the typical disadvantages of silver, such as cytotoxicity and systemic toxicity. This article discusses the use of Ag Oxysalts technology for infected wounds and presents case studies to support the efficacy of this product in promoting wound healing.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1134 ◽  
Author(s):  
Jiyoon Ryu ◽  
Colleen Loza ◽  
Huan Xu ◽  
Min Zhou ◽  
Jason Hadley ◽  
...  

Adiponectin is an adipokine with anti-insulin resistance and anti-inflammatory functions. It exists in serum predominantly in three multimeric complexes: the trimer, hexamer, and high-molecular-weight forms. Although recent studies indicate that adiponectin promotes wound healing in rodents, its role in the wound healing process in humans is unknown. This study investigated the expression levels of adiponectin in adipose tissue and serum of women who experienced either normal or delayed wound healing after abdominal plastic surgery. We found that obese women with delayed healing had slightly lower total adiponectin levels in their adipose tissue compared with women with normal healing rates. Among the different isoforms of adiponectin, levels of the trimer forms were significantly reduced in adipose tissue, but not the serum, of obese women with delayed healing compared to women who healed normally. This study provides clinical evidence for a potential role of low-molecular-weight oligomers of adiponectin in the wound healing process as well as implications for an autocrine and/or paracrine mechanism of adiponectin action in adipose tissues.


Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 296
Author(s):  
Eyal Melamed ◽  
Patrick Kiambi ◽  
Dancan Okoth ◽  
Irena Honigber ◽  
Eran Tamir ◽  
...  

Novel antimicrobial wound dressings impregnated with copper oxide micro-particles have been cleared for treatment of acute and chronic wounds. Our objective is to provide preliminary data regarding the potential benefit of using these novel wound dressings including in non-infected wounds. Methods involved the treatment of wounds that responded partially or poorly to conventional wound healing treatments with copper oxide impregnated wound dressings in patients with a range of etiologies. Ten cases of patients with etiologies such as diabetes mellitus, sickle cell disease, renal failure, and necrotizing fasciitis, in which the application of copper oxide impregnated wound dressings in infected and non-infected wounds, which resulted in significant enhanced wound healing, are presented. This was exemplified by clearing of the wound infections, reduction of the fibrous and/or necrotic tissue and by intense granulation, epithelialization, and wound closure. The described 10 case reports support our hypothesis that the copper oxide-containing wound dressing not only confers protection to the wound and the dressing from microbial contamination, and in some cases may help clear the wound infections, but in addition and more importantly, stimulate skin regeneration and wound healing. Our findings are in line with previous animal and in vitro studies showing that copper plays a key role in angiogenesis and skin regeneration. These case reports support the notion that the use of copper oxide impregnated wound dressings may be an important intervention in the arsenal of wound treatment modalities, especially in hard to heal wounds.


2009 ◽  
Vol 34 (03) ◽  
Author(s):  
SC Blass ◽  
C Reimann ◽  
S Ellinger ◽  
H Goost ◽  
C Burger ◽  
...  

2020 ◽  
Vol 17 (2) ◽  
pp. 172
Author(s):  
HARMAN AGUSAPUTRA ◽  
MARIA SUGENG ◽  
AYLY SOEKAMTO ◽  
ATIK WULANDARI

<p><strong>Abstract</strong></p><p><strong>Background:</strong> Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) as antiseptic has been used frequently to clean woundsin in hospitals and clinics. Hydrogen peroxide has the effectof strong oxidative that can kill pathogens. It can clean up debris and necrotic tissuesin wounds. Hydrogen peroxidealso has hemostatic effect that can help to stop bleeding. Besides antiseptic effects, hydrogen peroxide i s suspected of having negative effect in wound healing. Hydrogen peroxide presumably could cause delayed wound healing by exudate formation and delayed epithelial growth.</p><p><strong>Method</strong>: This study was conducted in the laboratory using 48 white mice that were divided into 2 groups. All the mice were purposely wounded. Afterwards in one group the wounds were clean up using hydrogen peroxide, while in the other group without hydrogen peroxide as control. The wounds of both groups were observed on day 1, day 3 and day 7. On day 1 and day 3, both groups did not show significant difference.</p><p><strong>R</strong><strong>esult</strong> : on day 7 showed that the wound healing in hydrogen peroxide group were delayed. Fifty percent of them had the formation of exudate and 62.5% of them showed delayed epithelial growth.</p><p><strong>Conclusion </strong>: This study could show hydrogen peroxide as wound antiseptic has delayed wound healing effect.</p><p><strong>Keyword</strong>: hydrogen peroxide, wound healing</p>


2018 ◽  
Vol 8 (2) ◽  
pp. 135-150 ◽  
Author(s):  
Anthony J. Deegan ◽  
Wendy Wang ◽  
Shaojie Men ◽  
Yuandong Li ◽  
Shaozhen Song ◽  
...  

Author(s):  
Marcus Rickert ◽  
Michael Rauschmann ◽  
Nizar Latif-Richter ◽  
Mohammad Arabmotlagh ◽  
Tamin Rahim ◽  
...  

Abstract Background and Study Aims The treatment of infections following a spine surgery continues to be a challenge. Negative pressure wound therapy (NPWT) has been an effective method in the context of infection therapy, and its use has gained popularity in recent decades. This study aims to analyze the impact of known risk factors for postoperative wound infection on the efficiency and length of NPWT therapy until healing. Patients and Methods We analyzed 50 cases of NPWT treatment for deep wound infection after posterior and posteroanterior spinal fusion from March 2010 to July 2014 retrospectively. We included 32 women and 18 men with a mean age of 69 years (range, 36–87 years). Individual risk factors for postoperative infection, such as age, gender, obesity, diabetes, immunosuppression, duration of surgery, intraoperative blood loss, and previous surgeries, as well as type and onset (early vs. late) of the infection were analyzed. We assessed the associations between these risk factors and the number of revisions until wound healing. Results In 42 patients (84%), bacterial pathogens were successfully detected by means of intraoperative swabs and tissue samples during first revision. A total of 19 different pathogens could be identified with a preponderance of Staphylococcus epidermidis (21.4%) and S. aureus (19.0%). Methicillin-resistant S. aureus (MRSA) was recorded in two patients (2.6%). An average of four NPWT revisions was required until the infection was cured. Patients with infections caused by mixed pathogens required a significantly higher number of revisions (5.3 vs. 3.3; p < 0.01) until definitive wound healing. For the risk factors, no significant differences in the number of revisions could be demonstrated when compared with the patients without the respective risk factor. Conclusion NPWT was an effective therapy for the treatment of wound infections after spinal fusion. All patients in the study had their infections successfully cured, and all spinal implants could be retained. The number of revisions was similar to those reported in the published literature. The present study provides insights regarding the effectiveness of NPWT for the treatment of deep wound infection after spinal fusion. Further investigations on the impact of potential risk factors for postoperative wound healing disorders are required. Better knowledge on the impact of specific risk factors will contribute to a higher effectiveness of prophylaxis for postoperative wound infections considering the patient-specific situation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 349
Author(s):  
Anam Razzaq ◽  
Zaheer Ullah Khan ◽  
Aasim Saeed ◽  
Kiramat Ali Shah ◽  
Naveed Ullah Khan ◽  
...  

Diabetic wound infections caused by conventional antibiotic-resistant Staphylococcus aureus strains are fast emerging, leading to life-threatening situations (e.g., high costs, morbidity, and mortality) associated with delayed healing and chronic inflammation. Electrospinning is one of the most widely used techniques for the fabrication of nanofibers (NFs), induced by a high voltage applied to a drug-loaded polymer solution. Particular attention is given to electrospun NFs for pharmaceutical applications (e.g., original drug delivery systems) and tissue regeneration (e.g., as tissue scaffolds). However, there is a paucity of reports related to their application in diabetic wound infections. Therefore, we prepared eco-friendly, biodegradable, low-immunogenic, and biocompatible gelatin (GEL)/polyvinyl alcohol (PVA) electrospun NFs (BNFs), in which we loaded the broad-spectrum antibiotic cephradine (Ceph). The resulting drug-loaded NFs (LNFs) were characterized physically using ultraviolet-visible (UV-Vis) spectrophotometry (for drug loading capacity (LC), drug encapsulation efficiency (EE), and drug release kinetics determination), thermogravimetric analysis (TGA) (for thermostability evaluation), scanning electron microscopy (SEM) (for surface morphology analysis), and Fourier-transform infrared spectroscopy (FTIR) (for functional group identification). LNFs were further characterized biologically by in-vitro assessment of their potency against S. aureus clinical strains (N = 16) using the Kirby–Bauer test and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, by ex-vivo assessment to evaluate their cytotoxicity against primary human epidermal keratinocytes using MTT assay, and by in-vivo assessment to estimate their diabetic chronic wound-healing efficiency using NcZ10 diabetic/obese mice (N = 18). Thin and uniform NFs with a smooth surface and standard size (<400 nm) were observed by SEM at the optimized 5:5 (GEL:PVA) volumetric ratio. FTIR analyses confirmed the drug loading into BNFs. Compared to free Ceph, LNFs were significantly more thermostable and exhibited sustained/controlled Ceph release. LNFs also exerted a significantly stronger antibacterial activity both in-vitro and in-vivo. LNFs were significantly safer and more efficient for bacterial clearance-induced faster chronic wound healing. LNF-based therapy could be employed as a valuable dressing material to heal S. aureus-induced chronic wounds in diabetic subjects.


Blood ◽  
2006 ◽  
Vol 108 (9) ◽  
pp. 3053-3060 ◽  
Author(s):  
Maureane Hoffman ◽  
Anna Harger ◽  
Angela Lenkowski ◽  
Ulla Hedner ◽  
Harold R. Roberts ◽  
...  

Abstract We used a mouse model to test the hypothesis that the time course and histology of wound healing is altered in hemophilia B. Punch biopsies (3 mm) were placed in the skin of normal mice and mice with hemophilia. The size of the wounds was measured daily until the epidermal defect closed. All wounds closed in mice with hemophilia by 12 days, compared with 10 days in normal animals. Skin from the area of the wound was harvested at different time points and examined histologically. Hemophilic animals developed subcutaneous hematomas; normal animals did not. Macrophage infiltration was significantly delayed in hemophilia B. Unexpectedly, hemophilic mice developed twice as many blood vessels in the healing wounds as controls, and the increased vascularity persisted for at least 2 weeks. The deposition and persistence of ferric iron was also greater in hemophilic mice. We hypothesize that iron plays a role in promoting excess angiogenesis after wounding as it had been proposed to do in hemophilic arthropathy. We have demonstrated that impaired coagulation leads to delayed wound healing with abnormal histology. Our findings have significant implications for treatment of patients with hemophilia, and also highlight the importance of rapidly establishing hemostasis following trauma or surgery.


Sign in / Sign up

Export Citation Format

Share Document