scholarly journals Multiple Sex-Specific Differences in the Regulation of Meiotic Progression in C. elegans

2020 ◽  
Author(s):  
Sara M. Fielder ◽  
Rieke Kempfer ◽  
William G. Kelly

ABSTRACTMeiosis is a highly conserved sexual process, yet significant differences exist between males and females in meiotic regulation in many species. Meiotic progression in C. elegans males proceeds more rapidly than female meiosis, suggesting that female meiotic regulation may be more stringent than in males. We have identified multiple differences in the regulation of synapsis, including a difference that suggests the presence of a female-specific meiotic checkpoint that senses the proper initiation of synapsis. This checkpoint is detected by sex differences in the targeting of histone H3 lysine 9 dimethylation (H3K9me2) to unsynapsed chromatin. During oogenic meiosis in hermaphrodites, the failure to initiate synapsis leads to failure to target H3K9me2 enrichment on unsynapsed chromosomes. Loss of the pachytene checkpoint does not reintroduce H3K9me2 enrichment in hermaphrodites, indicating these checkpoints are separable. In contrast, widespread H3K9me2 enrichment occurs as a result of loss of synapsis initiation in both male meiosis and during spermatogenic meiosis in larval XX hermaphrodites. Additionally, male synapsis is insensitive to loss of the dynein motor light chain DLC-1 and to elevated temperatures, whereas female synapsis is prevented by both conditions. We also show that loss of spindle assembly checkpoint proteins, which provide a kinetic barrier to meiotic progression and are required for DLC-1-dependent synapsis phenotypes in hermaphrodites, does not speed up the rate of synapsis in spermatogenic meiosis. These results indicate that meiosis proceeds more rapidly in males because males lack barriers to meiotic progression that are activated by defective synapsis initiation in females.

2018 ◽  
Author(s):  
Mohammed A. Amin ◽  
Richard J. McKenney ◽  
Dileep Varma

AbstractChromosome alignment and segregation during mitosis depends critically on kinetochoremicrotubule (kMT) attachments that are mediated by the function of the molecular motor cytoplasmic dynein, and the kinetochore microtubule (MT) binding complex, Ndc80. The RZZ (Rod-ZW10-Zwilch) complex is central to this coordination as it has an important role in dynein recruitment and has recently been reported to have a key function in the regulation of stable kMT attachment formation in C. elegans. However, the mechanism by which kMT attachments are controlled by the coordinated function of these protein complexes to drive chromosome motility during early mitosis is still unclear. In this manuscript, we provide evidence to show that Ndc80 and dynein directly antagonize each other’s MT-binding. We also find that severe chromosome alignment defects induced by depletion of dynein, or the dynein adapter spindly, are rescued by codepletion of the RZZ component, Rod, in human cells. Interestingly, the rescue of chromosome alignments defects was independent of Rod function in activation of the spindle assembly checkpoint and was accompanied by a remarkable restoration of stable kMT attachments. Furthermore, rescue of chromosome alignment was critically dependent on the plus-end-directed motility of CENP-E, as cells codepleted of CENP-E along with Rod and dynein were unable to establish stable kMT attachments or align their chromosomes properly. Taken together, our findings support the idea that the dynein motor may control the function of the Ndc80 complex in stabilizing kMT attachments either directly by interfering with Ndc80-MT binding, and/or indirectly by modulating the Rod-mediated inhibition of Ndc80.


2015 ◽  
Vol 211 (2) ◽  
pp. 233-242 ◽  
Author(s):  
Tisha Bohr ◽  
Christian R. Nelson ◽  
Erin Klee ◽  
Needhi Bhalla

Homologue synapsis is required for meiotic chromosome segregation, but how synapsis is initiated between chromosomes is poorly understood. In Caenorhabditis elegans, synapsis and a checkpoint that monitors synapsis depend on pairing centers (PCs), cis-acting loci that interact with nuclear envelope proteins, such as SUN-1, to access cytoplasmic microtubules. Here, we report that spindle assembly checkpoint (SAC) components MAD-1, MAD-2, and BUB-3 are required to negatively regulate synapsis and promote the synapsis checkpoint response. Both of these roles are independent of a conserved component of the anaphase-promoting complex, indicating a unique role for these proteins in meiotic prophase. MAD-1 and MAD-2 localize to the periphery of meiotic nuclei and interact with SUN-1, suggesting a role at PCs. Consistent with this idea, MAD-1 and BUB-3 require full PC function to inhibit synapsis. We propose that SAC proteins monitor the stability of pairing, or tension, between homologues to regulate synapsis and elicit a checkpoint response.


Genetics ◽  
2021 ◽  
Author(s):  
Sara M Fielder ◽  
Tori Kent ◽  
Huiping Ling ◽  
Elizabeth J Gleason ◽  
William G Kelly

Abstract The dynein motor complex is thought to aid in homolog pairing in many organisms by moving chromosomes within the nuclear periphery to promote and test homologous interactions. This precedes synaptonemal complex (SC) formation during homolog synapsis, which stabilizes homolog proximity during recombination. We observed that depletion of the dynein light chain (DLC-1) in Caenorhabditis elegans irreversibly prevents synapsis, causing an increase in off-chromatin formation of SC protein foci with increasing temperature. This requirement for DLC-1 is independent of its function in dynein motors, as SYP protein foci do not form with depletion of other dynein motor components. In contrast to normal SC-related structures, foci formed with DLC-1 depletion are resistant to dissolution with 1,6-hexanediol, similar to aggregates of SC proteins formed in high growth temperatures. Dynein light chains have been shown to act as hub proteins that interact with other proteins through a conserved binding motif. We identified a similar DLC-1 binding motif in the C. elegans SC protein SYP-2, and mutation of the putative motif causes meiosis defects that are exacerbated by elevated temperatures. We propose that DLC-1 acts as a pre-synapsis chaperone-like factor for SYP proteins to help regulate their self-association prior to the signals for SC assembly, a role that is revealed by its increased essentiality at elevated temperatures.


Reproduction ◽  
2007 ◽  
Vol 133 (4) ◽  
pp. 685-695 ◽  
Author(s):  
Dong Zhang ◽  
Shen Yin ◽  
Man-Xi Jiang ◽  
Wei Ma ◽  
Yi Hou ◽  
...  

The present study was designed to investigate the localization and function of cytoplasmic dynein (dynein) during mouse oocyte meiosis and its relationship with two major spindle checkpoint proteins, mitotic arrest-deficient (Mad) 1 and Mad2. Oocytes at various stages during the first meiosis were fixed and immunostained for dynein, Mad1, Mad2, kinetochores, microtubules, and chromosomes. Some oocytes were treated with nocodazole before examination. Anti-dynein antibody was injected into the oocytes at germinal vesicle (GV) stage before the examination of its effects on meiotic progression or Mad1 and Mad2 localization. Results showed that dynein was present in the oocytes at various stages from GV to metaphase II and the locations of Mad1 and Mad2 were associated with dynein’s movement. Both Mad1 and Mad2 had two existing states: one existed in the cytoplasm (cytoplasmic Mad1 or cytoplasmic Mad2), which did not bind to kinetochores, while the other bound to kinetochores (kinetochore Mad1 or kinetochore Mad2). The equilibrium between the two states varied during meiosis and/or in response to the changes of the connection between microtubules and kinetochores. Cytoplasmic Mad1 and Mad2 recruited to chromosomes when the connection between microtubules and chromosomes was destroyed. Inhibition of dynein interferes with cytoplasmic Mad1 and Mad2 transportation from chromosomes to spindle poles, thus inhibits checkpoint silence and delays anaphase onset. These results indicate that dynein may play a role in spindle checkpoint inactivation.


2014 ◽  
Vol 205 (1) ◽  
pp. 202-215 ◽  
Author(s):  
Laetitia Paganelli ◽  
Marie-Cécile Caillaud ◽  
Michaël Quentin ◽  
Isabelle Damiani ◽  
Benjamin Govetto ◽  
...  

Toxicology ◽  
2006 ◽  
Vol 226 (1) ◽  
pp. 16
Author(s):  
Anders Olsen ◽  
Maithili C. Vantipalli ◽  
Glenda A. Walker ◽  
Gordon J. Lithgow

2018 ◽  
Vol 19 (9) ◽  
pp. 2679 ◽  
Author(s):  
Livia Ulicna ◽  
Jana Rohozkova ◽  
Pavel Hozak

One of the most studied phosphoinositides is phosphatidylinositol 4,5-bisphosphate (PIP2), which localizes to the plasma membrane, nuclear speckles, small foci in the nucleoplasm, and to the nucleolus in mammalian cells. Here, we show that PIP2 also localizes to the nucleus in prophase I, during the gametogenesis of C. elegans hermaphrodite. The depletion of PIP2 by type I PIP kinase (PPK-1) kinase RNA interference results in an altered chromosome structure and leads to various defects during meiotic progression. We observed a decreased brood size and aneuploidy in progeny, defects in synapsis, and crossover formation. The altered chromosome structure is reflected in the increased transcription activity of a tightly regulated process in prophase I. To elucidate the involvement of PIP2 in the processes during the C. elegans development, we identified the PIP2-binding partners, leucine-rich repeat (LRR-1) protein and proteasome subunit beta 4 (PBS-4), pointing to its involvement in the ubiquitin–proteasome pathway.


2001 ◽  
Vol 114 (17) ◽  
pp. 3103-3114 ◽  
Author(s):  
Frédéric Scaërou ◽  
Daniel A. Starr ◽  
Fabio Piano ◽  
Ophelia Papoulas ◽  
Roger E. Karess ◽  
...  

The zeste-white 10 (zw10) and rough deal (rod) genes of Drosophila both encode kinetochore components, and mutations in either gene greatly increase the missegregation of sister chromatids during mitosis. Here, we present genetic, cytological and biochemical evidence for a close, evolutionarily conserved relationship between the ROD and ZW10 proteins. We show that the phenotypes caused by disruption of either gene’s function are similar in Drosophila and in C. elegans. No additive effects are observed in zw10; rod double null mutants. In flies, the two proteins always colocalize and, moreover, require each other for their recruitment to the mitotic apparatus. The human ROD and ZW10 homologs also colocalize on HeLa cell kinetochores or kinetochore microtubules throughout most but not all of mitosis. Finally, we show that in both Drosophila and human cells, ROD and ZW10 are in fact physically associated, and in Drosophila these proteins are together constituents of a large (700-900 kDa), soluble macromolecular complex.


Author(s):  
Gunar Fabig ◽  
Anna Schwarz ◽  
Cynthia Striese ◽  
Michael Laue ◽  
Thomas Müller-Reichert

Sign in / Sign up

Export Citation Format

Share Document