scholarly journals Sensing of endogenous nucleic acids by ZBP1 induces keratinocyte necroptosis and skin inflammation

2020 ◽  
Author(s):  
Michael Devos ◽  
Giel Tanghe ◽  
Barbara Gilbert ◽  
Evelien Dierick ◽  
Maud Verheirstraeten ◽  
...  

AbstractAberrant detection of endogenous nucleic acids by the immune system can cause inflammatory disease. The scaffold function of the signalling kinase RIPK1 limits spontaneous activation of the nucleic acid sensor ZBP1. Consequently, loss of RIPK1 in keratinocytes induces ZBP1-dependent necroptosis and skin inflammation. Whether nucleic acid sensing is required to activate ZBP1 in RIPK1 deficient conditions and which immune pathways are associated with skin disease remained open questions. Using knock-in mice with disrupted ZBP1 nucleic acid binding activity, we report that sensing of endogenous nucleic acids by ZBP1 is critical in driving skin pathology characterised by antiviral and IL-17 immune responses. Inducing ZBP1 expression by interferons triggers necroptosis in RIPK1-deficient keratinocytes and epidermis-specific deletion of MLKL prevents disease, demonstrating that cell-intrinsic events cause inflammation. These findings indicate that dysregulated sensing of endogenous nucleic acid by ZBP1 can drive inflammation and may contribute to the pathogenesis of IL-17-driven inflammatory skin conditions such as psoriasis.SummaryDevos, Tanghe et al. find that the recognition of endogenous nucleic acids by the nucleic acid sensor ZBP1 causes necroptosis of RIPK1-deficient keratinocytes. This process drives the development of an inflammatory skin disease characterised by an IL-17 immune response.

2020 ◽  
Vol 217 (7) ◽  
Author(s):  
Michael Devos ◽  
Giel Tanghe ◽  
Barbara Gilbert ◽  
Evelien Dierick ◽  
Maud Verheirstraeten ◽  
...  

Aberrant detection of endogenous nucleic acids by the immune system can cause inflammatory disease. The scaffold function of the signaling kinase RIPK1 limits spontaneous activation of the nucleic acid sensor ZBP1. Consequently, loss of RIPK1 in keratinocytes induces ZBP1-dependent necroptosis and skin inflammation. Whether nucleic acid sensing is required to activate ZBP1 in RIPK1-deficient conditions and which immune pathways are associated with skin disease remained open questions. Using knock-in mice with disrupted ZBP1 nucleic acid–binding activity, we report that sensing of endogenous nucleic acids by ZBP1 is critical in driving skin pathology characterized by antiviral and IL-17 immune responses. Inducing ZBP1 expression by interferons triggers necroptosis in RIPK1-deficient keratinocytes, and epidermis-specific deletion of MLKL prevents disease, demonstrating that cell-intrinsic events cause inflammation. These findings indicate that dysregulated sensing of endogenous nucleic acid by ZBP1 can drive inflammation and may contribute to the pathogenesis of IL-17–driven inflammatory skin conditions such as psoriasis.


2020 ◽  
Vol 21 (10) ◽  
pp. 3620 ◽  
Author(s):  
Kento Mizutani ◽  
Kana Isono ◽  
Yoshiaki Matsushima ◽  
Karin Okada ◽  
Ai Umaoka ◽  
...  

Secondary osteoporosis can also be caused by chronic inflammatory skin disease as well as rheumatoid arthritis or inflammatory bowel disease. However, the exact role of osteoporosis in inflammatory skin conditions has not been elucidated. Using a mouse model of dermatitis, we investigated the pathophysiology of osteoporosis in inflammatory skin conditions and the therapeutic impact of osteoporosis medication on inflammatory skin disease. We employed model mice of spontaneous skin inflammation, specifically overexpressing human caspase-1 in the epidermis. Bone density and the expression of various mRNAs in the femur were examined by micro CT and RT-PCR. The effects of minodronate and anti-RANKL antibody on bone structure, histology, and femur blood flow were studied. The mouse model of skin inflammation showed a marked decrease in bone density compared to wild-type littermates with abnormalities in both bone resorption and formation. Minodronate improved bone density by decreasing osteoclasts, but anti-RANKL antibody did not improve. In the dermatitis model, the blood flow in the bone marrow was decreased, and minodronate restored this parameter. A model of persistent dermatitis exhibited marked osteoporosis, but the impact of chronic dermatitis on osteoporosis has not been thoroughly investigated. We should explore the pathogenesis of osteoporosis in skin inflammatory diseases.


1986 ◽  
Vol 41 (9-10) ◽  
pp. 897-909 ◽  
Author(s):  
Constantin E. Vorgias ◽  
Peter Traub

Abstract In analogy to experimental results previously obtained with vimentin and neurofilament triplet proteins, the intermediate filament (IF) proteins desmin and glial fibrillary acidic protein (GFAP) were also found to have high capacities to associate with nucleic acids. Employing a collection of native and heat-denatured pro-and eukaryotic DNAs, a series of naturally occurring single­ stranded (ss)RNAs and a variety of synthetic polynucleotides of the RNA and DNA type, both proteins could be shown to bind preferentially to single-stranded polynucleotides. In the case of ssDNA and synthetic polyribonucleotides, a clear dependency of the binding activity on the G-content of the nucleic acids was demonstrated. The interaction of desmin with ssDNA and tRNA was characterized by strong cooperativity. When a mixture of desmin and vimentin was offered to excess ssDNA, the cooperativity effect brought about segregation of both protein species into two distinct populations of deoxyribonucleoprotein particles with substantially differ­ent sedimentation rates; this segregation is in sharp contrast to the ability of desmin and vimentin to form heteropolymers in filament assembly. In general, desmin and GFAP were found to be similar to vimentin and neurofilament proteins in their nucleic acid-binding properties. However, there were also striking differences between individual non-epithelial IF proteins at this level.


Author(s):  
Stephen D. Jett

The electrophoresis gel mobility shift assay is a popular method for the study of protein-nucleic acid interactions. The binding of proteins to DNA is characterized by a reduction in the electrophoretic mobility of the nucleic acid. Binding affinity, stoichiometry, and kinetics can be obtained from such assays; however, it is often desirable to image the various species in the gel bands using TEM. Present methods for isolation of nucleoproteins from gel bands are inefficient and often destroy the native structure of the complexes. We have developed a technique, called “snapshot blotting,” by which nucleic acids and nucleoprotein complexes in electrophoresis gels can be electrophoretically transferred directly onto carbon-coated grids for TEM imaging.


2020 ◽  
Vol 118 (3) ◽  
pp. 75a
Author(s):  
Saumya M. De Silva ◽  
Nicholas J. Schnicker ◽  
Catherine A. Musselman

2013 ◽  
Vol 110 (41) ◽  
pp. 16450-16455 ◽  
Author(s):  
H.-S. Seo ◽  
B. J. Blus ◽  
N. Z. Jankovic ◽  
G. Blobel

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3471-3471
Author(s):  
Jennifer Whangbo ◽  
Marshall Thomas ◽  
Geoffrey McCrossan ◽  
Aaron Deutsch ◽  
Kimberly Martinod ◽  
...  

Abstract When released from cytotoxic T lymphocytes and natural killer cells, Granzyme (Gzm) serine proteases induce programmed cell death of pathogen-infected cells and tumor cells. The Gzms rapidly accumulate in the target cell nucleus by an unknown mechanism. Many of the known substrates of GzmA and GzmB, the most abundant killer cell proteases, bind to DNA or RNA. Gzm substrates predicted by unbiased proteomics studies are also highly enriched for nucleic acid binding proteins. Here we show by fluorescence polarization assays that Gzms bind DNA and RNA with nanomolar affinity. We hypothesized that Gzm binding to nucleic acids enhances nuclear accumulation in target cells and facilitates their cleavage of nucleic acid-binding substrates. In fact, RNase treatment of cell lysates reduced cleavage of RNA binding protein (RBP) targets by GzmA and GzmB. Moreover, adding RNA to recombinant RBP substrates greatly enhanced in vitro cleavage by GzmB, but adding RNA to non-nucleic acid binding proteins did not. For example, exogenous RNA enhanced GzmB cleavage of recombinant hnRNP C1 (an RBP) but not LMNB1 (a non-RBP). In addition, GzmB cleaved the RNA-binding HuR protein efficiently only when it was bound to an HuR-binding RNA oligonucleotide, but not in the presence of an equal amount of non-binding RNA. Thus, nucleic acids facilitate Gzm cleavage of nucleic acid binding substrates. To evaluate whether nucleic acid binding influences Gzm trafficking in target cells, we incubated fixed target cells with RNase and then added Gzms. RNA degradation in target cells reduced Gzm cytosolic localization and increased nuclear accumulation. Similarly, pre-incubating Gzms with exogenous competitor DNA reduced Gzm nuclear localization. The Gzms form a monophyletic clade with other immune serine proteases including neutrophil elastase (NE) and cathepsin G (CATG). Upon neutrophil activation, NE translocates to the nucleus to drive the formation of neutrophil extracellular traps (NETs). NE and CATG, but not non-immune serine proteases such as trypsin and pancreatic elastase, also bind DNA with high affinity and localize to the nucleus of permeabilized cells. Consistent with this finding, competitor DNA also blocks the nuclear localization of NE. Moreover NE and CATG localization to NETs depends on DNA binding. Thus the antimicrobial activity of NETs may depend in part upon the affinity of these proteases for DNA. Our findings indicate that high affinity nucleic acid binding is a conserved and functionally important property of serine proteases involved in cell-mediated immunity. Disclosures: Lieberman: Alnylam Pharmaceuticals: Membership on an entity’s Board of Directors or advisory committees.


2016 ◽  
Vol 114 (2) ◽  
pp. 304-309 ◽  
Author(s):  
Bret D. Wallace ◽  
Zachary Berman ◽  
Geoffrey A. Mueller ◽  
Yunfeng Lin ◽  
Timothy Chang ◽  
...  

The Xenopus laevis APE2 (apurinic/apyrimidinic endonuclease 2) nuclease participates in 3′-5′ nucleolytic resection of oxidative DNA damage and activation of the ATR-Chk1 DNA damage response (DDR) pathway via ill-defined mechanisms. Here we report that APE2 resection activity is regulated by DNA interactions in its Zf-GRF domain, a region sharing high homology with DDR proteins Topoisomerase 3α (TOP3α) and NEIL3 (Nei-like DNA glycosylase 3), as well as transcription and RNA regulatory proteins, such as TTF2 (transcription termination factor 2), TFIIS, and RPB9. Biochemical and NMR results establish the nucleic acid-binding activity of the Zf-GRF domain. Moreover, an APE2 Zf-GRF X-ray structure and small-angle X-ray scattering analyses show that the Zf-GRF fold is typified by a crescent-shaped ssDNA binding claw that is flexibly appended to an APE2 endonuclease/exonuclease/phosphatase (EEP) catalytic core. Structure-guided Zf-GRF mutations impact APE2 DNA binding and 3′-5′ exonuclease processing, and also prevent efficient APE2-dependent RPA recruitment to damaged chromatin and activation of the ATR-Chk1 DDR pathway in response to oxidative stress in Xenopus egg extracts. Collectively, our data unveil the APE2 Zf-GRF domain as a nucleic acid interaction module in the regulation of a key single-strand break resection function of APE2, and also reveal topologic similarity of the Zf-GRF to the zinc ribbon domains of TFIIS and RPB9.


Sign in / Sign up

Export Citation Format

Share Document