scholarly journals Alternative splicing is a developmental switch for hTERT expression

2020 ◽  
Author(s):  
Alex Penev ◽  
Andrew Bazley ◽  
Michael Shen ◽  
Jef D. Boeke ◽  
Sharon A. Savage ◽  
...  

High telomerase activity is restricted to the blastocyst stage of embryonic development when telomere length is reset, and is characteristic of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). However, the pathways involved in telomerase regulation as a function of pluripotency remain unknown. To explore hTERT transcriptional control, we compare genome-wide interactions (4C-seq) and chromatin accessibility (ATAC-seq) between human ESCs and epithelial cells and identify several putative hTERT cis-regulatory elements. CRISPR/Cas9-mediated deletion of candidate elements in ESCs reduces the levels of hTERT mRNA but does not abolish telomerase expression, thus implicating post-transcriptional processes in telomerase regulation. In agreement with this hypothesis, we find an hTERT splice variant lacking exon-2 and prone to degradation, to be enriched in differentiated cells but absent from ESCs. In addition, we show that forced retention of exon-2 prevents telomerase silencing during differentiation. Lastly, we highlight a role for the splicing co-factor SON in hTERT exon-2 inclusion and identify a SON mutation in a Dyskeratosis congenita patient with short telomeres and decreased telomerase activity. Altogether, our data uncover a novel alternative splice switch that is critical for telomerase activity during development.

2019 ◽  
Author(s):  
Kersti Jääger ◽  
Daniel Simpson ◽  
Maria Kalantzaki ◽  
Angela Salzano ◽  
Ian Chambers ◽  
...  

ABSTRACTEmbryonic stem cells (ESCs) express heterogeneous levels of pluripotency and developmental transcription factors (TFs) and their cell cycle is unsynchronised when grown in the presence of serum. Here, we asked whether the cell cycle and developmental heterogeneities of ESCs are coordinated by determining the state identities of G1- and G2M-enriched mouse ESCs (mESCs) at single cell resolution. We found that G2M cells were not all the same and demonstrate their split into the naïve and formative (intermediate) pluripotency states marked by high or low Esrrb expression, respectively. The naïve G2M sub-state resembles ‘ground’ state pluripotency of the LIF/2i cultured mESCs. The naïve and formative G2M sub-states exist in the pre- and post-implantation stages of the mouse embryo, respectively, verifying developmental distinction. Moreover, the G2M sub-states partially match between the mouse and human ESCs, suggesting higher similarity of transcriptional control between these species in G2M. Our findings propose a model whereby G2M separates mESCs into naïve and formative pluripotency states. This concept of G2M-diverted pluripotency states provides new framework for understanding the mechanisms of pluripotency maintenance and lineage specification in vitro and in vivo, and the development of more efficient and clinically relevant reprogramming strategies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ping Zhou ◽  
Jia-Min Shi ◽  
Jing-E Song ◽  
Yu Han ◽  
Hong-Jiao Li ◽  
...  

Abstract Background Derivation of osteoblast-like cells from human pluripotent stem cells (hPSCs) is a popular topic in bone tissue engineering. Although many improvements have been achieved, the low induction efficiency because of spontaneous differentiation hampers their applications. To solve this problem, a detailed understanding of the osteogenic differentiation process of hPSCs is urgently needed. Methods Monolayer cultured human embryonic stem cells and human-induced pluripotent stem cells were differentiated in commonly applied serum-containing osteogenic medium for 35 days. In addition to traditional assays such as cell viability detection, reverse transcription-polymerase chain reaction, immunofluorescence, and alizarin red staining, we also applied studies of cell counting, cell telomerase activity, and flow cytometry as essential indicators to analyse the cell type changes in each week. Results The population of differentiated cells was quite heterogeneous throughout the 35 days of induction. Then, cell telomerase activity and cell cycle analyses have value in evaluating the cell type and tumourigenicity of the obtained cells. Finally, a dynamic map was made to integrate the analysis of these results during osteogenic differentiation of hPSCs, and the cell types at defined stages were concluded. Conclusions Our results lay the foundation to improve the in vitro osteogenic differentiation efficiency of hPSCs by supplementing with functional compounds at the desired stage, and then establishing a stepwise induction system in the future.


2019 ◽  
Author(s):  
Isabelle Leticia Zaboroski Silva ◽  
Anny Waloski Robert ◽  
Guillermo Cabrera Cabo ◽  
Lucia Spangenberg ◽  
Marco Augusto Stimamiglio ◽  
...  

AbstractPosttranscriptional regulation plays a fundamental role in the biology of embryonic stem cells (ESCs). Many studies have demonstrated that multiple mRNAs are coregulated by one or more RNA binding proteins (RBPs) that orchestrate the expression of these molecules. A family of RBPs, known as PUF (Pumilio-FBF), is highly conserved among species and has been associated with the undifferentiated and differentiated states of different cell lines. In humans, two homologs of the PUF family have been found: Pumilio 1 (PUM1) and Pumilio 2 (PUM2). To understand the role of these proteins in human ESCs (hESCs), we first demonstrated the influence of the silencing of PUM1 and PUM2 on pluripotency genes. OCT4 and NANOG mRNA levels decreased significantly with the knockdown of Pumilio, suggesting that PUMILIO proteins play a role in the maintenance of pluripotency in hESCs. Furthermore, we observed that the hESCs silenced for PUM1 and 2 exhibited an improvement in efficiency of in vitro cardiomyogenic differentiation. Using in silico analysis, we identified mRNA targets of PUM1 and PUM2 expressed during cardiomyogenesis. With the reduction of PUM1 and 2, these target mRNAs would be active and could be involved in the progression of cardiomyogenesis.


Author(s):  
Fatma Dogan ◽  
Nicholas R. Forsyth

The epigenetic nature of telomeres is still controversial and different human cell lines might show diverse histone marks at telomeres. Epigenetic modifications regulate telomere length and telomerase activity that influence telomere structure and maintenance. Telomerase is responsible for telomere elongation and maintenance and is minimally composed of the catalytic protein component, telomerase reverse transcriptase (TERT) and template forming RNA component, telomerase RNA (TERC). TERT promoter mutations may underpin some telomerase activation but regulation of the gene is not completely understood due to the complex interplay of epigenetic, transcriptional, and posttranscriptional modifications. Pluripotent stem cells (PSCs) can maintain an indefinite, immortal, proliferation potential through their endogenous telomerase activity, maintenance of telomere length, and a bypass of replicative senescence in vitro. Differentiation of PSCs results in silencing of the TERT gene and an overall reversion to a mortal, somatic cell phenotype. The precise mechanisms for this controlled transcriptional silencing are complex. Promoter methylation has been suggested to be associated with epigenetic control of telomerase regulation which presents an important prospect for understanding cancer and stem cell biology. Control of down-regulation of telomerase during differentiation of PSCs provides a convenient model for the study of its endogenous regulation. Telomerase reactivation has the potential to reverse tissue degeneration, drive repair, and form a component of future tissue engineering strategies. Taken together it becomes clear that PSCs provide a unique system to understand telomerase regulation fully and drive this knowledge forward into aging and therapeutic application.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 261 ◽  
Author(s):  
Sergey Sinenko ◽  
Elena Skvortsova ◽  
Mikhail Liskovykh ◽  
Sergey Ponomartsev ◽  
Andrey Kuzmin ◽  
...  

AlphoidtetO-type human artificial chromosome (HAC) has been recently synthetized as a novel class of gene delivery vectors for induced pluripotent stem cell (iPSC)-based tissue replacement therapeutic approach. This HAC vector was designed to deliver copies of genes into patients with genetic diseases caused by the loss of a particular gene function. The alphoidtetO-HAC vector has been successfully transferred into murine embryonic stem cells (ESCs) and maintained stably as an independent chromosome during the proliferation and differentiation of these cells. Human ESCs and iPSCs have significant differences in culturing conditions and pluripotency state in comparison with the murine naïve-type ESCs and iPSCs. To date, transferring alphoidtetO-HAC vector into human iPSCs (hiPSCs) remains a challenging task. In this study, we performed the microcell-mediated chromosome transfer (MMCT) of alphoidtetO-HAC expressing the green fluorescent protein into newly generated hiPSCs. We used a recently modified MMCT method that employs an envelope protein of amphotropic murine leukemia virus as a targeting cell fusion agent. Our data provide evidence that a totally artificial vector, alphoidtetO-HAC, can be transferred and maintained in human iPSCs as an independent autonomous chromosome without affecting pluripotent properties of the cells. These data also open new perspectives for implementing alphoidtetO-HAC as a gene therapy tool in future biomedical applications.


2017 ◽  
Vol 29 (1) ◽  
pp. 101 ◽  
Author(s):  
R. Michael Roberts ◽  
Ye Yuan ◽  
Toshihiko Ezashi

This short review describes some general features of the origins of the pluripotent inner cell mass and epiblast during the early development of eutherian mammals and the two kinds of embryonic stem cell (ESC), naïve and primed type, that have been produced from these structures. We point out that the derivation of pluripotent stem cells from domesticated species continues to be fraught with difficulties, most likely because the culture requirements of these cells are distinct from those of mouse and human ESCs. Generation of induced pluripotent stem cells (iPSCs) from the domesticated species has been more straightforward, although the majority of the iPSC lines remain dependent on the continued expression of one or more integrated reprogramming genes. Although hope for the potential usefulness of these cells in genetic modification of livestock and other domestic species has dimmed, ESCs and iPSCs remain our best source of self-renewing populations of pluripotent cells, with potential usefulness in preserving and propagating valuable animal breeds and making contributions to fields such as regenerative medicine, toxicology and even laboratory meat production.


Author(s):  
Chika Ogura ◽  
Shoko Nishihara

Mouse embryonic stem cells (mESCs) have the properties of self-renewal and pluripotency. Various signals and growth factors maintain their undifferentiated state and also regulate their differentiation. Glycosaminoglycans are present on the cell surface and in the cell matrix as proteoglycans. Previously, we and other groups reported that the glycosaminoglycan heparan sulfate contributes to both maintenance of undifferentiated state and regulation of mESC differentiation. It has been shown that chondroitin sulfate is needed for pluripotency and differentiation of mESCs, while keratan sulfate is a known marker of human ESCs or induced pluripotent stem cells. We also found that DS promotes neuronal differentiation from mESCs and human neural stem cells; however, the function of DS in the maintenance of mESCs has not yet been revealed. Here, we investigated the role of DS in mESCs by knockdown (KD) or overexpression (O/E) of the dermatan-4-O-sulfotransferase-1 (D4ST1) gene. We found that the activity of the ESC self-renewal marker alkaline phosphatase was reduced in D4ST1 KD mESCs, but, in contrast, increased in D4ST1 O/E mESCs. D4ST1 KD promoted endodermal differentiation, as indicated by an increase in Cdx2 expression. Conversely, Cdx2 expression was decreased by D4ST1 O/E. Wnt signaling, which is also involved in endodermal differentiation, was activated by D4ST1 KD and suppressed by D4ST1 O/E. Collectively, these results demonstrate that D4ST1 contributes to the undifferentiated state of mESCs. Our findings provide new insights into the function of DS in mESCs.


2021 ◽  
Author(s):  
Candice Byers ◽  
Catrina Spruce ◽  
Haley J. Fortin ◽  
Anne Czechanski ◽  
Steven C. Munger ◽  
...  

AbstractGenetically diverse pluripotent stem cells (PSCs) display varied, heritable responses to differentiation cues in the culture environment. By harnessing these disparities through derivation of embryonic stem cells (ESCs) from the BXD mouse genetic reference panel, along with C57BL/6J (B6) and DBA/2J (D2) parental strains, we demonstrate genetically determined biases in lineage commitment and identify major regulators of the pluripotency epigenome. Upon transition to formative pluripotency using epiblast-like cells (EpiLCs), B6 quickly dissolves naïve networks adopting gene expression modules indicative of neuroectoderm lineages; whereas D2 retains aspects of naïve pluripotency with little bias in differentiation. Genetic mapping identifies 6 major trans-acting loci co-regulating chromatin accessibility and gene expression in ESCs and EpiLCs, indicating a common regulatory system impacting cell state transition. These loci distally modulate occupancy of pluripotency factors, including TRIM28, P300, and POU5F1, at hundreds of regulatory elements. One trans-acting locus on Chr 12 primarily impacts chromatin accessibility in ESCs; while in EpiLCs the same locus subsequently influences gene expression, suggesting early chromatin priming. Consequently, the distal gene targets of this locus are enriched for neurogenesis genes and were more highly expressed when cells carried B6 haplotypes at this Chr 12 locus, supporting genetic regulation of biases in cell fate. Spontaneous formation of embryoid bodies validated this with B6 showing a propensity towards neuroectoderm differentiation and D2 towards definitive endoderm, confirming the fundamental importance of genetic variation influencing cell fate decisions.


Sign in / Sign up

Export Citation Format

Share Document