scholarly journals A dual role for Axin in establishing the anterior-posterior axis in the early sea urchin embryo

2020 ◽  
Author(s):  
Hongyan Sun ◽  
ChiehFu Jeff Peng ◽  
Lingyu Wang ◽  
Honglin Feng ◽  
Athula H. Wikramanayake

AbstractThe activation of Wnt/β-catenin (cWnt) signaling at the future posterior end of early embryos is a highly conserved mechanism for initiating pattern formation along the anterior-posterior (AP) axis in bilaterians. Moreover, in many bilaterian taxa, in addition, to activation of cWnt signaling at the posterior end, inhibition of cWnt signaling at the anterior end is required for normal development of anterior structures. In most cases, inhibition of cWnt signaling at the anterior end occurs around gastrulation and it is typically mediated by secreted factors that block signal transduction through the cWnt cell surface receptor-ligand complex. This phenomenon has been fairly well characterized, but the emerging role for intracellular inhibition of cWnt signaling in future anterior blastomeres—in cleavage stage embryos—to regulate correct AP patterning is less well understood. To investigate this process in an invertebrate deuterostome embryo we studied the function of Axin, a critical negative regulator of cWnt signaling, during early sea urchin embryogenesis. Sea urchin Axin is ubiquitously expressed in early embryos and by the blastula stage the expression of the gene becomes restricted to the posterior end of the embryo. Strikingly, knockdown of Axin protein levels using antisense Axin morpholinos (MO) led to ectopic nuclearization of β-catenin and activation of endomesoderm gene expression in anterior blastomeres in early embryos. These embryos developed a severely posteriorized phenotype that could be fully rescued by co-injection of Axin MO with wild-type Axin mRNA. Axin is known to negatively regulate cWnt by its role in mediating β-catenin stability within the destruction complex. Consistent with this function overexpression of Axin by mRNA injection led to the downregulation of nuclear β-catenin, inhibition of endomesoderm specification and a strong anteriorization of embryos. Axin has several well-defined domains that regulate its interaction with β-catenin and the key regulators of the destruction complex, Adenomatous Polyposis Coli (APC), Glycogen Synthase Kinase 3β(GSK-3β), and Dishevelled (Dvl). Using Axin constructs with single deletions of the binding sites for these proteins we showed that only the GSK-3βbinding site on Axin is required for its inhibition of cWnt in the sea urchin embryo. Strikingly, overexpression of the GSK-3β-binding domain alone led to embryos with elevated levels of endomesoderm gene expression and a strongly posteriorized phenotype. These results indicated that Axin has a critical global role in inhibiting cWnt signaling in the early sea urchin embryo, and moreover, that the interaction of Axin with GSK-3βis critical for this inhibition. These results also add to the growing body of evidence that Axin plays a global function in suppressing cWnt signaling in early embryos and indicates that modulation of Axin function may be a critical early step during patterning of the AP axis during bilaterian development

Development ◽  
2021 ◽  
pp. dev.191197
Author(s):  
Hongyan Sun ◽  
ChiehFu Jeff Peng ◽  
Lingyu Wang ◽  
Honglin Feng ◽  
Athula H. Wikramanayake

Activation of Wnt/β-catenin (cWnt) signaling at the future posterior end of early bilaterian embryos is a highly conserved mechanism for establishing the anterior-posterior (AP) axis. Moreover, inhibition of cWnt at the anterior end is required for development of anterior structures in many deuterostome taxa. This phenomenon, which occurs around the time of gastrulation, has been fairly well characterized but the significance of intracellular inhibition of cWnt signaling in cleavage-stage deuterostome embryos for normal AP patterning is less well understood. To investigate this process in an invertebrate deuterostome we defined Axin function in early sea urchin embryos. Axin is ubiquitously expressed at relatively high levels in early embryos and functional analysis revealed that Axin suppresses posterior cell fates in anterior blastomeres by blocking ectopic cWnt activation in these cells. Structure-function analysis of sea urchin Axin demonstrated that only its GSK-3β-binding domain is required for cWnt inhibition. These observations and results in other deuterostomes suggest that Axin plays a critical conserved role in embryonic AP patterning by preventing cWnt activation in multipotent early blastomeres, thus protecting them from assuming ectopic cell fates.


1985 ◽  
Vol 109 (2) ◽  
pp. 418-427 ◽  
Author(s):  
Martin Nemer ◽  
David G. Wilkinson ◽  
Elizabeth C. Travaglini

2008 ◽  
Vol 294 (6) ◽  
pp. H2587-H2595 ◽  
Author(s):  
James G. Ryall ◽  
Jonathan D. Schertzer ◽  
Kate T. Murphy ◽  
Andrew M. Allen ◽  
Gordon S. Lynch

We determined the cardiovascular effects of chronic β2-adrenoceptor (β2-AR) stimulation in vivo and examined the mechanism for the previously observed prolonged diastolic relaxation. Rats (3 mo old; n = 6), instrumented with implantable radiotelemeters, received the selective β2-AR agonist formoterol (25 μg·kg−1·day−1 ip) for 4 wk, with selected cardiovascular parameters measured daily throughout this period, and for a further 7 days after cessation of treatment. Chronic β2-AR stimulation was associated with an increase in heart rate (HR) of 17% ( days 1– 14) and 5% ( days 15–28); a 11% ( days 1– 14) and 6% ( days 15– 28) decrease in mean arterial blood pressure; and a 24% ( days 1– 14) increase in the rate of cardiac relaxation (−dP/d t) compared with initial values ( P < 0.05). Cessation of β2-AR stimulation resulted in an 8% decrease in HR and a 7% decrease in −dP/d t, compared with initial values ( P < 0.05). The prolonged cardiac relaxation with chronic β2-AR stimulation was associated with a 30% decrease in the maximal rate ( Vmax) of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity, likely attributed to a 50% decrease in SERCA2a protein ( P < 0.05). glycogen synthase kinase-3β (GSK-3β) has been implicated as a negative regulator of SERCA2 gene transcription, and we observed a ∼60% decrease ( P < 0.05) in phosphorylated GSK-3β protein after chronic β2-AR stimulation. Finally, we found a 40% decrease ( P < 0.05) in the mRNA expression of the novel A kinase anchoring protein AKAP18, also implicated in β2-AR-mediated cardiac relaxation. These findings highlight some detrimental cardiovascular effects of chronic β2-AR agonist administration and identify concerns for their current and future use for treating asthma or for conditions where muscle wasting and weakness are indicated.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
YI TAN ◽  
Xiaoqing Yan ◽  
Shanshan Zhou ◽  
Yong Li ◽  
Yan Li ◽  
...  

Cardiac insulin resistance is a key pathogenic factor for diabetic cardiomyopathy, but its mechanism remains largely unclear. Here we demonstrated that diabetes significantly inhibited cardiac Akt phosphorylation from 2 weeks to 2 months in wide-type (WT) mice, but not in cardiac-specific metallothionein-transgenic (MT-TG) mice. Cardiac Akt2 expression and phosphorylation was decreased and insulin-induced cardiac Akt2 and GSK-3β phosphorylation and glycogen synthase dephosphorylation were also decreased in WT, but not MT-TG, diabetic mice. Deletion of the Akt2 gene either in vitro H9c2 cells or in vivo significantly impaired cardiac glucose metabolic signaling. In addition, diabetes significantly increased cardiac Akt negative regulator tribbles (TRB)3 expression only in WT mice, suggesting the possible contribution of MT inhibition of diabetic up-regulation of TRB3 to Akt2 function preservation. Cardiac H9c2 cells with and without forced MT-overexpression (MT-H9c2) were treated with tert-butyl hydroperoxide (tBHP), which significantly reduced Akt2 phosphorylation in both basal and insulin-stimulating conditions only in H9c2 cells. Silencing TRB3 expression with SiRNA completely prevented tBHP’s inhibition of insulin-stimulated Akt2 phosphorylation in H9c2 cells, while overexpression of TRB3 in MT-H9c2 cells completely abolished MT preservation of insulin-stimulated Akt2 phosphorylation. Forced-overexpression of TRB3 by adenovirus-mediated gene delivery in MT-TG hearts also abolished MT’s preservation of cardiac insulin signaling and prevention of diabetic cardiomyopathy. These results suggest that diabetes-attenuated cardiac Akt2 function via up-regulating TRB3 plays a critical role in diabetic inhibition of insulin signaling in the heart. MT preserved cardiac Akt2-mediated insulin signaling by inhibiting TRB3, leading to the prevention of diabetic cardiomyopathy.


Sign in / Sign up

Export Citation Format

Share Document