scholarly journals Urine proteome changes in an α-synuclein transgenic mouse model of Parkinson’s disease

2020 ◽  
Author(s):  
Lujun Li ◽  
Xuanzhen Pan ◽  
Ting Wang ◽  
Yuanrui Hua ◽  
Youhe Gao

AbstractUrine accommodates more changes than other fluids, and it is a good source in the search for early sensitive biomarkers. The present study collected urine samples from 2-, 4-, 6-, 8- and 10-month-old α-synuclein transgenic mice. Based on data-independent acquisition (DIA) technology, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for quantitative analysis. Seventeen human homologous differential proteins were screened and compared with those in the urine of 2-month-old mice, and 9 proteins were related to Parkinson’s disease (PD). Formin-2, Splicing factor 3A subunit 1, and Isopentenyl-diphosphate Delta-isomerase 1 changed continuously in months 6, 8 and 10. These experiments and analyses demonstrated that the urine proteome reflected the development of α-synuclein transgenic mice and provided clues for the early clinical diagnosis of PD.

2020 ◽  
Author(s):  
Lujun Li ◽  
Xuanzhen Pan ◽  
Yongtao Liu ◽  
Ting Wang ◽  
Youhe Gao

AbstractUrine can accumulate changes and reflect early physiological and pathological changes of various diseases, such as tumors. Therefore, urine is an ideal source for identification of early biomarkers. In this study, melanoma and prostate cancer-bearing mouse models were established by subcutaneous injection of B16 and RM-1 cells, respectively. Urine samples were collected at four time points during tumor growth. Based on data-independent acquisition (DIA) technology, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for quantitative analysis. Compared with those before the injection of B16 cells, 38 human homologous differential proteins were identified, and 18 proteins were reported to be related to melanoma. Before the tumor was visible, there were 4 differential proteins, and all were reported to be related to melanoma. Compared with that before the injection of RM-1 cells, a total of 14 human homologous differential proteins were identified, and 9 proteins were reported to be associated with prostate cancer. Before the tumor was palpable, 9 proteins showed significant differences. There were significant differences between the two tumor-bearing models. Through the above experiments and analysis, we found that the urine proteome can reflect the changes in the development and provide early biomarkers of the two tumors and provide clues for the early clinical diagnosis of these diseases.


Brain ◽  
2019 ◽  
Vol 143 (1) ◽  
pp. 249-265 ◽  
Author(s):  
Tomoyuki Taguchi ◽  
Masashi Ikuno ◽  
Mari Hondo ◽  
Laxmi Kumar Parajuli ◽  
Katsutoshi Taguchi ◽  
...  

Abstract Parkinson’s disease is one of the most common movement disorders and is characterized by dopaminergic cell loss and the accumulation of pathological α-synuclein, but its precise pathogenetic mechanisms remain elusive. To develop disease-modifying therapies for Parkinson’s disease, an animal model that recapitulates the pathology and symptoms of the disease, especially in the prodromal stage, is indispensable. As subjects with α-synuclein gene (SNCA) multiplication as well as point mutations develop familial Parkinson’s disease and a genome-wide association study in Parkinson’s disease has identified SNCA as a risk gene for Parkinson’s disease, the increased expression of α-synuclein is closely associated with the aetiology of Parkinson’s disease. In this study we generated bacterial artificial chromosome transgenic mice harbouring SNCA and its gene expression regulatory regions in order to maintain the native expression pattern of α-synuclein. Furthermore, to enhance the pathological properties of α-synuclein, we inserted into SNCA an A53T mutation, two single-nucleotide polymorphisms identified in a genome-wide association study in Parkinson’s disease and a Rep1 polymorphism, all of which are causal of familial Parkinson’s disease or increase the risk of sporadic Parkinson’s disease. These A53T SNCA bacterial artificial chromosome transgenic mice showed an expression pattern of human α-synuclein very similar to that of endogenous mouse α-synuclein. They expressed truncated, oligomeric and proteinase K-resistant phosphorylated forms of α-synuclein in the regions that are specifically affected in Parkinson’s disease and/or dementia with Lewy bodies, including the olfactory bulb, cerebral cortex, striatum and substantia nigra. Surprisingly, these mice exhibited rapid eye movement (REM) sleep without atonia, which is a key feature of REM sleep behaviour disorder, at as early as 5 months of age. Consistent with this observation, the REM sleep-regulating neuronal populations in the lower brainstem, including the sublaterodorsal tegmental nucleus, nuclei in the ventromedial medullary reticular formation and the pedunculopontine nuclei, expressed phosphorylated α-synuclein. In addition, they also showed hyposmia at 9 months of age, which is consistent with the significant accumulation of phosphorylated α-synuclein in the olfactory bulb. The dopaminergic neurons in the substantia nigra pars compacta degenerated, and their number was decreased in an age-dependent manner by up to 17.1% at 18 months of age compared to wild-type, although the mice did not show any related locomotor dysfunction. In conclusion, we created a novel mouse model of prodromal Parkinson’s disease that showed RBD-like behaviour and hyposmia without motor symptoms.


2021 ◽  
Author(s):  
Melissa Scholefield ◽  
Stephanie J. Church ◽  
Jingshu Xu ◽  
Stefano Patassini ◽  
Federico Roncaroli ◽  
...  

Abstract Background: Widespread elevations in brain urea have, in recent years, been reported in certain types of age-related dementia, notably Alzheimer’s disease (AD) and Huntington’s disease (HD). Urea increases in these diseases are substantive, and approximate in magnitude to levels present in uraemic encephalopathy. In AD and HD, elevated urea levels occur across the entire brain, and not only in regions heavily affected by neurodegeneration. However, measurements of brain urea have not hitherto been reported in Parkinson’s disease dementia (PDD), a condition defined by changes in thinking and behaviour in someone with a diagnosis of Parkinson's disease, which shares neuropathological and symptomatic overlap with both AD and HD. This study aims to address this gap in the current knowledge of PDD.Methods: Here we report measurements of tissue urea from nine neuropathologically-confirmed regions of the brain in PDD and post-mortem-delay-matched controls, in regions that included the cerebellum, motor cortex, sensory cortex, hippocampus, substantia nigra, middle temporal gyrus, medulla oblongata, cingulate gyrus, and pons, by applying ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Case-control differences were determined using multiple t-tests followed by correction with 10% false discovery rate.Results: We found urea concentrations to be substantively elevated in all nine regions, the average increase being 3-4-fold. Urea concentrations were remarkably consistent across regions in both cases and controls, with no clear distinction between regions heavily affected by neuronal loss in PDD compared to less severely affected areas. These urea elevations mirror those found in uraemic encephalopathy, where equivalent levels are generally considered to be pathogenic. These urea elevations also reflect those previously reported in AD and HD. Conclusions: Increased urea is a widespread metabolic perturbation in brain metabolism common to PDD, AD, and HD, at levels equal to those seen in uremic encephalopathy. This presents a novel pathogenic mechanism in PDD, which is shared with two other neurodegenerative diseases.


2007 ◽  
Vol 50 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Rieko Setsuie ◽  
Yu-Lai Wang ◽  
Hideki Mochizuki ◽  
Hitoshi Osaka ◽  
Hideki Hayakawa ◽  
...  

Author(s):  
Shaosong Kuang ◽  
Lin Yang ◽  
Ziliang Rao ◽  
Zhiyong Zhong ◽  
Jinfeng Li ◽  
...  

AbstractBackground: Parkinson’s disease (PD) is a degenerative disorder of the central nervous system mainly affecting the motor system. Presently, there is no effective and safe drug to treat patients with PD. Ginkgo biloba extract (GBE), obtained from leaves of the Ginkgo biloba tree, is a complex mixture of ingredients primarily containing two active components: flavonoids and terpenoids. In this study, we investigated the effects of GBE on A53T α-synuclein transgenic mice, a PD model that has better simulated the progression of PD patients than other models such as the 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine–induced PD model. Methods: Fifty α-synuclein A53T transgenic mice were fed and treated with GBE, and locomotor activity was detected by pole test, forced swim test, and wire-hang test. The expression of tyrosine hydroxylase and dopamine transporters was detected using immunohistochemistry. Superoxide dismutase activity, glutathione peroxidase activity, and malondialdehyde expression were detected using an assay kit. Results: Our results show that GBE treatment improved locomotor activity and that superoxide dismutase and glutathione peroxidase inhibited the expression of methane dicarboxylic aldehyde and recovered the expression of tyrosine hydroxylase and dopamine transporters. Conclusions: The GBE treatment improved locomotor activity and inhibited the development of PD in the A53T α-synuclein transgenic mice, which may be partly responsible for decreased oxidative damage and maintain the normal dopamine homeostasis.


Sign in / Sign up

Export Citation Format

Share Document