scholarly journals PARTITIONING AMONG NICHE AND NEUTRAL EXPLANATIONS FOR METACOMMUNITY PATTERNS IN CERRADO STREAM FISH COMMUNITIES

2020 ◽  
Author(s):  
Thiago Bernardi Vieira ◽  
Liriann Chrisley Nascimento da Silva ◽  
Lilian Casatti ◽  
Renato Romero ◽  
Francisco Leonardo Tejerina Garro ◽  
...  

AbstractThe Species Sorting concept, one of the models developed to explain patterns in metacommunity structure, suggests that relationships between biological communities and environmental conditions is the basic means of the species selection processes. A second concept is neutral theory, and the idea of neutral dynamics underpinning metacommunity structure, cannot be overlooked. The third mechanism is the Mass Effect concept, that focuses on the interaction between environmental condition and neutral effects. In the present study, we partitioned fish communities in streams between niche and neutral theory concepts, identifying the best representation of metacommunity structure, and assessed if linear and hydrographic distance were equivalent in the representation of neutral processes. The result points to the importance of species sorting mechanisms in structuring fish communities with neutral processes best represented by the linear distances. On the other hand, the best representation of species’ niches was achieved with average values and variance of the local conditions.

Author(s):  
Thiago Bernardi Vieira ◽  
Liriann Chrisley Da Silva ◽  
Jessica Silva ◽  
Lilian Casatti ◽  
Renato de Romero ◽  
...  

The Species-Sorting concept, one of the models developed to explain patterns in metacommunity structure, suggests that relationships between biological communities and environmental conditions is the basic means of the species selection processes. A second concept is Neutral Theory, and the idea of neutral dynamics underpinning metacommunity structure, cannot be overlooked. The third mechanism is the Mass-Effect concept, that focuses on the interaction between environmental condition and neutral effects. In the present study, we partitioned fish communities in streams between niche and neutral theory concepts, identifying the best representation of metacommunity structure, and assessed if linear and hydrographic distance were equivalent in the representation of neutral processes. The result points to the importance of species sorting mechanisms in structuring fish communities with neutral processes best represented by the linear distances. These results are important for the fish fauna conservation leading to three considerations: (i) the variation of the landscape and habitat is important for the stream fish, (ii) the natural barriers are an important landscape component to be considered, and (iii) the artificial barriers (dams and impoundments) need to be planned taking in account the catchment basin as the landscape unit.


Biologia ◽  
2021 ◽  
Author(s):  
Lucena R. Virgilio ◽  
Werther Pereira Ramalho ◽  
João C. B. Silva ◽  
Monik Oliveira da Suçuarana ◽  
Rodrigo Souza Gomes ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Sung Kim ◽  
Seok Hyun Ahn ◽  
In Jae Jeong ◽  
Tae Kwon Lee

AbstractThe metacommunity approach provides insights into how the biological communities are assembled along the environmental variations. The current study presents the importance of water quality on the metacommunity structure of algal communities in six river-connected lakes using long-term (8 years) monitoring datasets. Elements of metacommunity structure were analyzed to evaluate whether water quality structured the metacommunity across biogeographic regions in the riverine ecosystem. The algal community in all lakes was found to exhibit Clementsian or quasi-Clementsian structure properties such as significant turnover, grouped and species sorting indicating that the communities responded to the environmental gradient. Reciprocal averaging clearly classified the lakes into three clusters according to the geographical region in river flow (upstream, midstream, and downstream). The dispersal patterns of algal genera, including Aulacoseira, Cyclotella, Stephanodiscus, and Chlamydomonas across the regions also supported the spatial-based classification results. Although conductivity, chemical oxygen demand, and biological oxygen demand were found to be important variables (loading > |0.5|) of the entire algal community assembly, water temperature was a critical factor in water quality associated with community assembly in each geographical area. These results support the notion that the structure of algal communities is strongly associated with water quality, but the relative importance of variables in structuring algal communities differed by geological regions.


2019 ◽  
pp. 266-284
Author(s):  
Gary G. Mittelbach ◽  
Brian J. McGill

Just as the dispersal of individuals may link the dynamics of populations in space, the dispersal of species among communities may link local communities into a metacommunity. Four different perspectives characterize how dispersal rates, environmental heterogeneity, and species traits interact to influence diversity in metacommunities. These perspectives are: patch dynamics, species sorting, mass effects, and the neutral perspective. The neutral perspective stands in stark contrast to the other three perspectives in that it assumes that niche differences between species are unimportant and that species are demographically identical in terms of their birth, death, and dispersal rates. Under the neutral perspective, species diversity is maintained by a balance between speciation, extinction, and dispersal. Although neutral theory is incompatible with realistic modes and rates of speciation, it has been enormously influential in focusing our attention on the linkages between species interactions on local scales, and evolutionary and biogeographic processes occurring on large scales.


2012 ◽  
Vol 39 ◽  
pp. 33-42 ◽  
Author(s):  
Ane Kirstine Brunbjerg ◽  
Rasmus Ejrnæs ◽  
Jens-Christian Svenning

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Máté Vass ◽  
Anna J. Székely ◽  
Eva S. Lindström ◽  
Silke Langenheder

AbstractTemporal variations in microbial metacommunity structure and assembly processes in response to shifts in environmental conditions are poorly understood. Hence, we conducted a temporal field study by sampling rock pools in four-day intervals during a 5-week period that included strong changes in environmental conditions due to intensive rain. We characterized bacterial and microeukaryote communities by 16S and 18S rRNA gene sequencing, respectively. Using a suite of null model approaches (elements of metacommunity structure, Raup-Crick beta-diversity and quantitative process estimates) to assess dynamics in community assembly, we found that strong changes in environmental conditions induced small but significant temporal changes in assembly processes and triggered different responses in bacterial and microeukaryotic metacommunities, promoting distinct selection processes. Incidence-based approaches showed that the assemblies of both communities were mainly governed by stochastic processes. In contrast, abundance-based methods indicated the dominance of historical contingency and unmeasured factors in the case of bacteria and microeukaryotes, respectively. We distinguished these processes from dispersal-related processes using additional tests. Regardless of the applied null model, our study highlights that community assembly processes are not static, and the relative importance of different assembly processes can vary under different conditions and between different microbial groups.


2019 ◽  
Vol 9 (9) ◽  
pp. 5206-5218 ◽  
Author(s):  
Omar Hernández‐Ordóñez ◽  
Bráulio A. Santos ◽  
Robert Alexander Pyron ◽  
Víctor Arroyo‐Rodríguez ◽  
J. Nicolás Urbina‐Cardona ◽  
...  

Hydrobiologia ◽  
2018 ◽  
Vol 819 (1) ◽  
pp. 109-122 ◽  
Author(s):  
Yang Yang ◽  
Haiyu Niu ◽  
Lijuan Xiao ◽  
Qiuqi Lin ◽  
Bo-Ping Han ◽  
...  

2016 ◽  
Author(s):  
Carl Simpson

AbstractThe mere existence of speciation and extinction make macro-evolutionary processes possible. Speciation and extinction introduce discontinuities in the microevolutionary change within lineages by initiating, disrupting, and terminating the continuity of species lineages. Within a clade, speciation and extinction become potent means of macroevolution in and of themselves. This process, termed species selection, is a macroevolutionary analogue of natural selection, with species playing an analogous part akin to that played by organisms in microevolution. That said, it has proven difficult to think about levels of selection. The concept of species sorting was introduced to help our thinking on this issue by identifying two aspects inherent in hierarchical systems can confuse our attempts to understand them: uncertainty in the level that selection acts and uncertainty about if the pattern of selection is in fact caused at all. Thanks to insights from evolutionary transitions in individuality, we now know more about how to identify the level of selection and how to parse the causal structure in hierarchical evolutionary circumstances. We know that if the fitness of organisms causes the fitness of more inclusive species then they must covary. However, there is no evidence of such a covariance between fitnesses at these two levels. This covariance is just not observed; neither between cells and organisms nor between organisms and species. Rather, speciation and extinction rates appear to be completely divorced from organismal fitness. With this insight, the concept of species sorting shrinks so that it only covers the two processes of species selection and drift. I argue that we are better off focusing on understanding the processes of species selection and drift and that there is therefore no further need for the concept of species sorting.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Gabriel Nakamura ◽  
Wagner Vicentin ◽  
Yzel Rondon Súarez

ABSTRACT Patterns of species replacement and richness differences along environmental gradients or ecoregions shed light on different ecological and evolutionary mechanisms acting on community structure. Communities of aquatic ecosystems of different watersheds are supposed to host distinct species and lineages. Quantifying and understanding the degree to which these differences are affected by environmental and biogeographical factors remains an open question for these environments, particularly in the Neotropical region. We investigated patterns of taxonomic and phylogenetic composition of headwater streams of the Paraná and Paraguai River basins to understand how local and biogeographical factors affect the assembly of fish communities. We also quantified taxonomic and phylogenetic beta diversity by decomposing them into nestedness and turnover components. We found that local environmental factors are the main factors influencing the composition of stream fish communities. Whereas pH affected both taxonomic and phylogenetic turnover, water velocity was responsible for phylogenetic turnover and pH was the main driver of phylogenetic nestedness. Our results indicate an effect of local environmental factors in determining the structure of headwater stream fish communities through a combination of a species sorting mechanism (water velocity and pH) and phylogenetic habitat filtering (pH).


Sign in / Sign up

Export Citation Format

Share Document