scholarly journals Reversed sex-biased mutation rates for indels and base substitutions in Drosophila melanogaster

2020 ◽  
Author(s):  
Lauri Törmä ◽  
Claire Burny ◽  
Christian Schlötterer

AbstractSex biases in mutation rates may affect the rate of adaptive evolution. In many species, males have higher mutation rates than females when single nucleotide variants (SNVs) are considered. In contrast, indel mutations in humans and chimpanzees are female-biased. In Drosophila melanogaster, direct estimates of mutation rates did not uncover sex differences, but a recent analysis suggested the presence of male-biased SNVs mutations. Here we study the sex-specific mutation processes using mutation accumulation data from mismatch-repair deficient D. melanogaster. We find that sex differences in flies are similar to the ones observed in humans: a higher mutation rate for SNVs in males and a higher indel rate in females. These results have major implications for the study of neutral variation and adaptation in Drosophila.

Author(s):  
Lauri Törmä ◽  
Claire Burny ◽  
Viola Nolte ◽  
Kirsten-André Senti ◽  
Christian Schlötterer

AbstractTranscription-coupled repair (TCR) removes base damage on the transcribed strand of a gene to ensure a quick resumption of transcription. Based on the absence of key enzymes for TCR and empirical evidence, TCR was thought to be missing in Drosophila melanogaster. The recent demonstration of TCR in S2 cells raises the question about the involved genes. Since the mismatch repair (MMR) pathway serves a central role in TCR, at least in Escherichia coli, we studied the mutational signatures in flies with a deletion of the MMR gene spellchecker1 (spel1), a MutS homolog. Whole-genome sequencing of mutation accumulation (MA) lines obtained 7,345 new single nucleotide variants (SNVs) and 5,672 short indel mutations, the largest data set from an MA study in D. melanogaster. Based on the observed mutational strand-asymmetries, we conclude that TCR is still active without spel1. The operation of TCR is further confirmed by a negative association between mutation rate and gene expression. Surprisingly, the TCR signatures are detected for introns, but not for exons. We propose that an additional exon-specific repair pathway is masking the signature of TCR. This study presents the first step towards understanding the molecular basis of TCR in Drosophila melanogaster.


Medicine ◽  
2017 ◽  
Vol 96 (50) ◽  
pp. e8845
Author(s):  
Lin-Qing Yuan ◽  
Jin-Hu Wang ◽  
Kun Zhu ◽  
Min Yang ◽  
Wei-Zhong Gu ◽  
...  

2020 ◽  
Vol 12 (4) ◽  
pp. 345-357 ◽  
Author(s):  
Niko Popitsch ◽  
Christian D Huber ◽  
Ilana Buchumenski ◽  
Eli Eisenberg ◽  
Michael Jantsch ◽  
...  

Abstract In animals, the most common type of RNA editing is the deamination of adenosines (A) into inosines (I). Because inosines basepair with cytosines (C), they are interpreted as guanosines (G) by the cellular machinery and genomically encoded G alleles at edited sites mimic the function of edited RNAs. The contribution of this hardwiring effect on genome evolution remains obscure. We looked for population genomics signatures of adaptive evolution associated with A-to-I RNA edited sites in humans and Drosophila melanogaster. We found that single nucleotide polymorphisms at edited sites occur 3 (humans) to 15 times (Drosophila) more often than at unedited sites, the nucleotide G is virtually the unique alternative allele at edited sites and G alleles segregate at higher frequency at edited sites than at unedited sites. Our study reveals that a significant fraction of coding synonymous and nonsynonymous as well as silent and intergenic A-to-I RNA editing sites are likely adaptive in the distantly related human and Drosophila lineages.


2020 ◽  
Vol 49 (D1) ◽  
pp. D706-D714 ◽  
Author(s):  
Shuyi Fang ◽  
Kailing Li ◽  
Jikui Shen ◽  
Sheng Liu ◽  
Juli Liu ◽  
...  

Abstract The COVID-19 outbreak has become a global emergency since December 2019. Analysis of SARS-CoV-2 sequences can uncover single nucleotide variants (SNVs) and corresponding evolution patterns. The Global Evaluation of SARS-CoV-2/hCoV-19 Sequences (GESS, https://wan-bioinfo.shinyapps.io/GESS/) is a resource to provide comprehensive analysis results based on tens of thousands of high-coverage and high-quality SARS-CoV-2 complete genomes. The database allows user to browse, search and download SNVs at any individual or multiple SARS-CoV-2 genomic positions, or within a chosen genomic region or protein, or in certain country/area of interest. GESS reveals geographical distributions of SNVs around the world and across the states of USA, while exhibiting time-dependent patterns for SNV occurrences which reflect development of SARS-CoV-2 genomes. For each month, the top 100 SNVs that were firstly identified world-widely can be retrieved. GESS also explores SNVs occurring simultaneously with specific SNVs of user's interests. Furthermore, the database can be of great help to calibrate mutation rates and identify conserved genome regions. Taken together, GESS is a powerful resource and tool to monitor SARS-CoV-2 migration and evolution according to featured genomic variations. It provides potential directive information for prevalence prediction, related public health policy making, and vaccine designs.


2017 ◽  
Author(s):  
Craig L. Bohrson ◽  
Allison R. Barton ◽  
Michael A. Lodato ◽  
Rachel E. Rodin ◽  
Vinay Viswanadham ◽  
...  

AbstractWhole-genome sequencing of DNA from single cells has the potential to reshape our understanding of the mutational heterogeneity in normal and disease tissues. A major difficulty, however, is distinguishing artifactual mutations that arise from DNA isolation and amplification from true mutations. Here, we describe linked-read analysis (LiRA), a method that utilizes phasing of somatic single nucleotide variants with nearby germline variants to identify true mutations, thereby allowing accurate estimation of somatic mutation rates at the single cell level.


2018 ◽  
Author(s):  
William Meyerson ◽  
Mark Gerstein

AbstractBackgroundMutations arise in the human genome in two major settings: the germline and soma. These settings involve different inheritance patterns, chromatin structures, and environmental exposures, all of which might be predicted to differentially affect the distribution of substitutions found in these settings. Nonetheless, recent studies have found that somatic and germline mutation rates are similarly affected by endogenous mutational processes and epigenetic factors.ResultsHere, we quantified the number of single nucleotide variants that co-occur between somatic and germline call-sets (cSNVs), compared this quantity with expectations, and explained noted departures. We found that three times as many variants are shared between the soma and germline than is expected by independence. We developed a new, general-purpose statistical framework to explain the observed excess of cSNVs in terms of the varying mutation rates of different kinds substitution types and of genomic regions. Using this metric, we find that more than 90% of this excess can be explained by our observation that the basic substitution types (such as N[C->T]G, C->A, etc.) have correlated mutation rates in the germline and soma. Matched-normal read depth analysis suggests that an appreciable fraction of this excess may also derive from germline contamination of somatic samples.ConclusionOverall, our results highlight the commonalities in substitution patterns between the germline and soma. The universality of some aspects of human mutation rates offers insight into the potential molecular mechanisms of human mutation. The highlighted similarities between somatic and germline mutation rates also lay the groundwork for future studies that distinguish disease-causing variants from a genomic background informed by both somatic and germline variant data. Moreover, our results also indicate that the depth of matched normal sequencing necessary to ensure genomic privacy of donors of somatic samples may be higher than previously appreciated. Furthermore, the fact that we were able to explain such a high portion of recurrent variants using known determinants of mutation rates is evidence that the genomics community has already discovered the most important predictors of mutation rates for single nucleotide variants.


2017 ◽  
Author(s):  
Niko Popitsch ◽  
Christian D. Huber ◽  
Ilana Buchumenski ◽  
Eli Eisenberg ◽  
Michael Jantsch ◽  
...  

AbstractIn animals, the most common type of RNA editing is the deamination of adenosines (A) into inosines (I). Because inosines base-pair with cytosines (C), they are interpreted as guanosines (G) by the cellular machinery and genomically encoded G alleles at edited sites mimic the function of edited RNAs. The contribution of this hardwiring effect on genome evolution remains obscure. We looked for population genomics signatures of adaptive evolution associated with A-to-I RNA edited sites in humans and Drosophila melanogaster. We found that single nucleotide polymorphisms at edited sites occur 3 (humans) to 15 times (Drosophila) more often than at unedited sites, the nucleotide G is virtually the unique alternative allele at edited sites and G alleles segregate at higher frequency at edited sites than at unedited sites. Our study reveals that coding synonymous and nonsynonymous as well as silent and intergenic A-to-I RNA editing sites are likely adaptive in the distantly related human and Drosophila lineages.


2007 ◽  
Vol 28 (3) ◽  
pp. 161-164 ◽  
Author(s):  
Rosalind Arden ◽  
Nicole Harlaar ◽  
Robert Plomin

Abstract. An association between intelligence at age 7 and a set of five single-nucleotide polymorphisms (SNPs) has been identified and replicated. We used this composite SNP set to investigate whether the associations differ between boys and girls for general cognitive ability at ages 2, 3, 4, 7, 9, and 10 years. In a longitudinal community sample of British twins aged 2-10 (n > 4,000 individuals), we found that the SNP set is more strongly associated with intelligence in males than in females at ages 7, 9, and 10 and the difference is significant at 10. If this finding replicates in other studies, these results will constitute the first evidence of the same autosomal genes acting differently on intelligence in the two sexes.


Author(s):  
Renata Parissi Buainain ◽  
Matheus Negri Boschiero ◽  
Bruno Camporeze ◽  
Paulo Henrique Pires de Aguiar ◽  
Fernando Augusto Lima Marson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document