scholarly journals Forkhead box O1-mediated ubiquitination suppresses RIG-I-mediated antiviral immune responses via its DNA binding domain

2020 ◽  
Author(s):  
Wei Liu ◽  
Yanlei Yue ◽  
Wenwen Zhang ◽  
Zhenling Ma ◽  
Wen Yao ◽  
...  

RNA virus infection activates the RIG-I signaling pathway to produce type I interferons (IFNs), the key components of the antiviral immune response. Forkhead box O1 (FoxO1) is a host transcription factor that participates in multiple biological processes. In this study, FoxO1 was identified as a critical negative regulator of RIG-I-triggered signaling. FoxO1 promoted Sendai virus (SeV) replication and downregulated type I IFN production. Upon SeV infection, FoxO1 suppressed K63-linked ubiquitination of TRAF3 and the interaction between TRAF3 and TBK1, after which the production of type I IFNs via the interferon regulatory transcription factor 3 (IRF3) pathways was reduced. In addition, FoxO1 destabilized IRF3 by facilitating E3 ligase TRIM22- or TRIM21-mediated K48-linked ubiquitination of IRF3. Moreover, the inhibitory effect of FoxO1 was found to depend on its DNA binding domain (DBD). Thus, our findings highlight novel important roles of FoxO1 in controlling RIG-I-mediated antiviral innate immunity.

2003 ◽  
Vol 23 (23) ◽  
pp. 8528-8541 ◽  
Author(s):  
Saku Miyamoto ◽  
Toru Suzuki ◽  
Shinsuke Muto ◽  
Kenichi Aizawa ◽  
Akatsuki Kimura ◽  
...  

ABSTRACT Here we show a novel pathway of transcriptional regulation of a DNA-binding transcription factor by coupled interaction and modification (e.g., acetylation) through the DNA-binding domain (DBD). The oncogenic regulator SET was isolated by affinity purification of factors interacting with the DBD of the cardiovascular transcription factor KLF5. SET negatively regulated KLF5 DNA binding, transactivation, and cell-proliferative activities. Down-regulation of the negative regulator SET was seen in response to KLF5-mediated gene activation. The coactivator/acetylase p300, on the other hand, interacted with and acetylated KLF5 DBD, and activated its transcription. Interestingly, SET inhibited KLF5 acetylation, and a nonacetylated mutant of KLF5 showed reduced transcriptional activation and cell growth complementary to the actions of SET. These findings suggest a new pathway for regulation of a DNA-binding transcription factor on the DBD through interaction and coupled acetylation by two opposing regulatory factors of a coactivator/acetylase and a negative cofactor harboring activity to inhibit acetylation.


Biochemistry ◽  
2004 ◽  
Vol 43 (51) ◽  
pp. 16027-16035 ◽  
Author(s):  
Shinichiro Oka ◽  
Yasuhisa Shiraishi ◽  
Takuya Yoshida ◽  
Tadayasu Ohkubo ◽  
Yukio Sugiura ◽  
...  

1996 ◽  
Vol 236 (3) ◽  
pp. 911-921 ◽  
Author(s):  
Jurgen Schultheiss ◽  
Olaf Kunert ◽  
Uwe Gase ◽  
Klaus-Dieter Scharf ◽  
Lutz Nover ◽  
...  

2017 ◽  
Author(s):  
Jungeui Hong ◽  
Nathan Brandt ◽  
Ally Yang ◽  
Tim Hughes ◽  
David Gresham

Understanding the molecular basis of gene expression evolution is a central problem in evolutionary biology. However, connecting changes in gene expression to increased fitness, and identifying the functional basis of those changes, remains challenging. To study adaptive evolution of gene expression in real time, we performed long term experimental evolution (LTEE) of Saccharomyces cerevisiae (budding yeast) in ammonium-limited chemostats. Following several hundred generations of continuous selection we found significant divergence of nitrogen-responsive gene expression in lineages with increased fitness. In multiple independent lineages we found repeated selection for non-synonymous mutations in the zinc finger DNA binding domain of the activating transcription factor (TF), GAT1, that operates within incoherent feedforward loops to control expression of the nitrogen catabolite repression (NCR) regulon. Missense mutations in the DNA binding domain of GAT1 reduce its binding affinity for the GATAA consensus sequence in a promoter-specific manner, resulting in increased expression of ammonium permease genes via both direct and indirect effects, thereby conferring increased fitness. We find that altered transcriptional output of the NCR regulon results in antagonistic pleiotropy in alternate environments and that the DNA binding domain of GAT1 is subject to purifying selection in natural populations. Our study shows that adaptive evolution of gene expression can entail tuning expression output by quantitative changes in TF binding affinities while maintaining the overall topology of a gene regulatory network.


2009 ◽  
Vol 75 (9) ◽  
pp. 2629-2637 ◽  
Author(s):  
Yaling Liu ◽  
Lin Zeng ◽  
Robert A. Burne

ABSTRACT Acidic conditions and the presence of exogenous agmatine are required to achieve maximal expression of the agmatine deiminase system (AgDS) of Streptococcus mutans. Here we demonstrate that the transcriptional activator of the AgDS, AguR, is required for the responses to agmatine and to low pH. Linker scanning mutagenesis was used to create a panel of mutated aguR genes that were utilized to complement an aguR deletion mutant of S. mutans. The level of production of the mutant proteins was shown to be comparable to that of the wild-type AguR protein. Mutations in the predicted DNA binding domain of AguR eliminated activation of the agu operon. Insertions into the region connecting the DNA binding domain to the predicted extracellular and transmembrane domains were well tolerated. In contrast, a variety of mutants were isolated that had a diminished capacity to respond to low pH but retained the ability to activate AgDS gene expression in response to agmatine, and vice versa. Also, a number of mutants were unable to respond to either agmatine or low pH. AguD, which is a predicted agmatine-putrescine antiporter, was found to be a negative regulator of AgDS gene expression in the absence of exogenous agmatine but was not required for low-pH induction of the AgDS genes. This study reveals that the control of AgDS gene expression by both agmatine and low pH is coordinated through the AguR protein and begins to identify domains of the protein involved in sensing and signaling.


2001 ◽  
Vol 307 (5) ◽  
pp. 1395-1410 ◽  
Author(s):  
Wolfgang Fieber ◽  
Martin L. Schneider ◽  
Theresia Matt ◽  
Bernhard Kräutler ◽  
Robert Konrat ◽  
...  

1993 ◽  
Vol 13 (11) ◽  
pp. 6858-6865
Author(s):  
M W Russo ◽  
C Matheny ◽  
J Milbrandt

NGFI-A is an immediate-early gene that encodes a transcription factor whose DNA-binding domain is composed of three zinc fingers. To define the domains responsible for its transcriptional activity, a mutational analysis was conducted with an NGFI-A molecule in which the zinc fingers were replaced by the GAL4 DNA-binding domain. In a cotransfection assay, four activation domains were found within NGFI-A. Three of the activation domains are similar to those characterized previously: one contains a large number of acidic residues, another is enriched in proline and glutamine residues, and another has some sequence homology to a domain found in Krox-20. The fourth bears no resemblance to previously described activation domains. NGFI-A also contains an inhibitory domain whose removal resulted in a 15-fold increase in NGFI-A activity. This increase in activity occurred in all mammalian cell types tested but not in Drosophila S2 cells. Competition experiments in which increasing amounts of the inhibitory domain were cotransfected along with NGFI-A demonstrated a dose-dependent increase in NGFI-A activity. A point mutation within the inhibitory domain of the competitor (I293F) abolished this property. When the analogous mutation was introduced into native NGFI-A, a 17-fold increase in activity was observed. The inhibitory effect therefore appears to be the result of an interaction between this domain and a titratable cellular factor which is weakened by this mutation. Downmodulation of transcription factor activity through interaction with a cellular factor has been observed in several other systems, including the regulation of transcription factor E2F by retinoblastoma protein, and in studies of c-Jun.


2005 ◽  
Vol 187 (24) ◽  
pp. 8504-8506 ◽  
Author(s):  
Toshiyuki Ueki ◽  
Sumiko Inouye

ABSTRACT FruA is an essential transcription factor for Myxococcus xanthus development. The expression of tps and dofA genes is fruA dependent. In this study, we show by gel shift and footprint assays with the C-terminal DNA-binding domain of FruA and by a lacZ fusion assay that FruA may directly activate dofA expression during development.


Sign in / Sign up

Export Citation Format

Share Document