scholarly journals Hypothalamic circuitry underlying stress-induced insomnia and peripheral immunosuppression

2020 ◽  
Author(s):  
Shi-Bin Li ◽  
Jeremy C Borniger ◽  
Hiroshi Yamaguchi ◽  
Julien Hédou ◽  
Brice Gaudillière ◽  
...  

AbstractThe neural substrates of insomnia/hyperarousal induced by stress remain unknown. Here, we show that restraint stress leads to hyperarousal associated with strong activation of corticotropin-releasing hormone neurons in the paraventricular nucleus of hypothalamus (CRHPVN) and hypocretin neurons in the lateral hypothalamus (HcrtLH). CRHPVN neurons are quiescent during natural sleep-wake transitions but are strongly active under restraint stress. CRISPR-Cas9-mediated knockdown of the crh gene in CRHPVN neurons abolishes hyperarousal elicited by stimulating LH-projecting CRHPVN neurons. Genetic ablation of Hcrt neurons or crh gene knockdown significantly reduces insomnia/hyperarousal induced by restraint stress. Given the association between stress and immune function, we used single-cell mass cytometry by time of flight (CyTOF) to analyze peripheral blood and found extensive changes to immune cell distribution and functional responses during wakefulness upon optogenetic stimulation of CRHPVN neurons. Our findings suggest both central and peripheral systems are synergistically engaged in the response to stress via CRHPVN circuitry.

2020 ◽  
Vol 6 (37) ◽  
pp. eabc2590 ◽  
Author(s):  
Shi-Bin Li ◽  
Jeremy C. Borniger ◽  
Hiroshi Yamaguchi ◽  
Julien Hédou ◽  
Brice Gaudilliere ◽  
...  

The neural substrates of insomnia/hyperarousal induced by stress remain unknown. Here, we show that restraint stress leads to hyperarousal associated with strong activation of corticotropin-releasing hormone neurons in the paraventricular nucleus of hypothalamus (CRHPVN) and hypocretin neurons in the lateral hypothalamus (HcrtLH). CRHPVN neurons directly innervate HcrtLH neurons, and optogenetic stimulation of LH-projecting CRHPVN neurons elicits hyperarousal. CRISPR-Cas9–mediated knockdown of the crh gene in CRHPVN neurons abolishes hyperarousal induced by stimulating LH-projecting CRHPVN neurons. Genetic ablation of Hcrt neurons or crh gene knockdown significantly counteracts restraint stress–induced hyperarousal. Single-cell mass cytometry by time of flight (CyTOF) revealed extensive changes to immune cell distribution and functional responses in peripheral blood during hyperarousal upon optogenetic stimulation of CRHPVN neurons simulating stress-induced insomnia. Our findings suggest both central and peripheral systems are synergistically engaged in the response to stress via CRHPVN circuitry.


2014 ◽  
Vol 6 (255) ◽  
pp. 255ra131-255ra131 ◽  
Author(s):  
Brice Gaudillière ◽  
Gabriela K. Fragiadakis ◽  
Robert V. Bruggner ◽  
Monica Nicolau ◽  
Rachel Finck ◽  
...  

Delayed recovery from surgery causes personal suffering and substantial societal and economic costs. Whether immune mechanisms determine recovery after surgical trauma remains ill-defined. Single-cell mass cytometry was applied to serial whole-blood samples from 32 patients undergoing hip replacement to comprehensively characterize the phenotypic and functional immune response to surgical trauma. The simultaneous analysis of 14,000 phosphorylation events in precisely phenotyped immune cell subsets revealed uniform signaling responses among patients, demarcating a surgical immune signature. When regressed against clinical parameters of surgical recovery, including functional impairment and pain, strong correlations were found with STAT3 (signal transducer and activator of transcription), CREB (adenosine 3′,5′-monophosphate response element–binding protein), and NF-κB (nuclear factor κB) signaling responses in subsets of CD14+ monocytes (R = 0.7 to 0.8, false discovery rate <0.01). These sentinel results demonstrate the capacity of mass cytometry to survey the human immune system in a relevant clinical context. The mechanistically derived immune correlates point to diagnostic signatures, and potential therapeutic targets, that could postoperatively improve patient recovery.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1859-1859 ◽  
Author(s):  
Yongxian Hu ◽  
Zhang Yanlei ◽  
Guoqing Wei ◽  
Chang alex Hong ◽  
He Huang

Background BCMA CAR-T cells have demonstrated substantial clinical activity against relapsed/refractory multiple myeloma (RRMM). In different clinical trials, the overall response rate (ORR) varied from 50% to 100%. Complete remission (CR) rate varied from 20% to 80%. Here we developed a BCMA CAR-T cell product manufactured via lentiviral vector-mediated transduction of activated T cells to express a second-generation CAR with 4-1BB costimulatory domain and evaluated the efficacy and safety, moreover, dynamics of immune cell subsets using single-cell mass cytometry during treatment were analyzed. Methods Our trial (ChiCTR1800017404) is a phase 1, single-arm, open-label single center study to evaluate the safety and efficacy of autologous BCMA CAR-T treatment for RRMM. Patients were subjected to a lymphodepleting regimen with Flu and Cy prior to CAR-T infusion. BCMA CAR-T cells were administered as a single infusion at a median dose of 3.5 (1 to 6) ×106/kg. MM response assessment was conducted according to the International Uniform Response Criteria. Cytokine-release syndrome (CRS) was graded as Lee DW et al described (Blood.2014;124(2):188-195). Phenotypic analysis of peripheral blood mononuclear cells (PBMCs), frozen BCMA CAR-T aliquots, phenotype and in vivo kinetics of immune cell subsets after CAR-T infusion were performed by single-cell mass cytometry. Results As of the data cut-off date (August 1st, 2019), 33 patients, median age 62.5 (49 to 75) years old were infused with BCMA CAR-T cells. The median observation period is 8.0 (0.7 to 18) months. ORR was 100% (The patient who died of infection at 20 days after CAR-T infusion were excluded). All the 32 patients achieved MRD negative in bone marrow by flow cytometry in 2 weeks after CAR-T infusion. Partial response (4 PR, 12.1%), VGPR (7 VGPR, 21.2%), and complete response (21 CR, 63.6%) within 12 weeks post CAR-T infusion were achieved. Durable responses from 4 weeks towards the data cut-off date were found in 28/33 patients (84.8%) (Figure 1a). All patients had detectable CAR-T expansion by flow cytometry from Day 3 post CAR-T cell infusion. The peak CAR-T cell expansion in CD3+ lymphocytes of peripheral blood (PB) varied from 35% to 95% with a median percentage of 82.9%. CRS was reported in all the 33 patients, including 4 with Grade 1, 13 with Grade 2 and 16 with Grade 3. During follow-up, 1-year progression-free survival (PFS) was 70.7% (Figure 1b) and overall survival (OS) was 71.7% (Figure 1c). Multivariate analysis of patients with PR and patients with CR+VGPR revealed that factors including extramedullary infiltration, age>60 years old, high-risk cytogenetics, late stage and CAR-T cell dose were not associated with clinical response (P>0.05). Single-cell mass cytometry revealed that the frequency of total T cells, CD8+ T cells, NK cells and CD3+CD56+ NKT cells in PB was not associated with BCM CAR-T expansion or clinical response. CD8+ Granzyme B+ Ki-67+ CAR-T cells expanded prominently in CRS period. As serum cytokines increased during CRS, non-CAR-T immune cell subsets including PD1+ NK cells, CD8+ Ki-67+ ICOS+ T cells expanded dominantly implying that non-CAR-T cells were also activated after CAR-T treatment. After CRS, stem cell like memory CAR-T cells (CD45RO+ CCR7- CD28- CD95+) remain the main subtype of CAR-T cells (Figure 1d). Conclusions Our data showed BCMA CAR-T treatment is safe with prominent efficacy which can overcome the traditional high-risk factors. We also observed high expansion level and long-term persistence of BCMA CAR-T cells contribute to potent anti-myeloma activity. Stem cell like memory CAR-T cells might be associated with long-term persistence of BCMA CAR-T cells. These initial data provide strong evidence to support the further development of this anti-myeloma cellular immunotherapy. Figure 1. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Bingbing Wu ◽  
Yu Li ◽  
Chengrui An ◽  
Deming Jiang ◽  
Lin Gong ◽  
...  

AbstractAbnormal ECM caused serious body wide diseases and elastin is one of the important ECM components. But its systemic function still has not yet been thoroughly illustrated due to limitations related to novel research technologies. To uncover the functions of elastin, a new method for body-wide organ transcriptome profiling, combined with single-cell mass cytometry of the blood, was developed. A body-wide organ transcriptomic (BOT) map was created by performing RNA-seq of 17 organs from both Loxl1 knockout (KO) and wide type (WT) mice. The BOT results showed a systematic up-regulation of genes related to immune response and proliferation process in multiple tissues of the KO mice; histological and immune staining also confirmed the hyperplasia and infiltration of local immune cells in the vagina, small intestine, and liver tissues of KO mice. Furthermore, using 32 markers, CYTOF mass cytometry analysis of the immune cell subpopulations from the peripheral blood revealed apparent systemic immune changes in the KO mice; data showed an activated NK cells and T cells with a higher expression of CD44 and CD38, and a suppressed B cells, macrophages and neutrophils with lower expressions of CD62L, CD44 and IL6. More interestingly, these findings also correlated well with the data obtained from cancer patient databases; tumor patients had higher mutation frequency of Loxl1, and the Loxl1-mutant tumor patients had up-regulated immune process, cell proliferation and decreased survival rate. Thus, this research provided a powerful strategy to screen body-wide organ functions of a particular gene; the findings also illustrated the important biological roles of elastin on multiple organ cells and systemic immunity. These strategy and discoveries are both of important value for the understanding of ECM biology and multi-organ cancer pathology.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jin Sung Jang ◽  
Brian D. Juran ◽  
Kevin Y. Cunningham ◽  
Vinod K. Gupta ◽  
Young Min Son ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A698-A698
Author(s):  
Todd Bartkowiak ◽  
Sierra Barone ◽  
Madeline Hayes ◽  
Allison Greenplate ◽  
Justine Sinnaeve ◽  
...  

BackgroundGlioblastomas make up more than 60% of adult primary brain tumors and carry a median survival of less than 15 months despite aggressive therapy. Immunotherapy, now standard of care for many peripheral solid tumors, offers an appealing alternative platform that may improve survival outcomes for patients with glioblastoma; however, predictive features that could inform responsiveness to different immunotherapeutic modalities remains to be elucidated. Recent studies have demonstrated that patients whose tumors show radiographic contact with the lateral ventricle have diminished survival outcomes compared to patients whose tumors do not contact the lateral ventricle. While greater immune infiltrate correlates with more favorable outcomes and more effectual responses to immunotherapy, the anti-tumor immune response in the ventricle is unknown. We hypothesized that ventricle contact may provide a uniquely immunosuppressive microenvironment within the brain that promotes tumor growth by suppressing anti-tumor immunity, that may be overcome with appropriate targeting strategies.MethodsPrimary glioblastoma tumors obtained in accordance with the Declaration of Helsinki and with institutional IRB approval (#131870) were disaggregated into single-cell suspensions. Radiographic contact with the LV was identified by MRI imaging and confirmed by a trained neurosurgeon. Multi-dimensional single-cell mass cytometry (CyTOF) then measured >30 immune parameters in thirteen immune subpopulations infiltrating human glioblastomas, including T cells, natural killer cells, B cells, microglia, peripheral macrophages, and myeloid-derived suppressors cells (MDSC). Computational machine-learning pipelines including Citrus, t-SNE, FlowSOM, and MEM identified key differences in the abundance and phenotypes of immune infiltrates.ResultsOn the basis of glioblastoma contact with the ventricle, we computationally identified consequential distinctions in the abundance of T cell, macrophage, and microglia subsets constituting five immunotype signatures among glioblastoma patients. Immunotypes associated with CD69+CD32+CD44+ peripheral macrophages and PD-1+TIGIT+ CD8 T cells correlated with ventricle contact, whereas immunotypes associated with enriched γδ T cells, B, NK cell, and tissue-resident microglial cells correlated with tumors distal to the ventricle. Further, immune infiltration in the tumor microenvironment correlated with patient outcome, with higher lymphocyte infiltrates correlating with more favorable outcomes, and immune exhaustion correlating with less favorable outcomes.ConclusionsSingle-cell mass cytometry in conjunction with the machine learning tools identified key differences in immune cell abundance between lateral ventricle contacting and non-contacting glioblastomas. These results provide key insights into the immune microenvironment of glioblastomas and elucidate several clinically actionable immunotherapeutic targets that may be used to optimize treatment strategies for glioblastomas based on ventricle contact status.Ethics ApprovalThis study was approved by Vanderbilt University’s Institutional Ethics Board, approval number 131870


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. M. Spatz ◽  
M. Hughes Fulford ◽  
A. Tsai ◽  
D. Gaudilliere ◽  
J. Hedou ◽  
...  

AbstractExposure to microgravity (µG) during space flights produces a state of immunosuppression, leading to increased viral shedding, which could interfere with long term missions. However, the cellular mechanisms that underlie the immunosuppressive effects of µG are ill-defined. A deep understanding of human immune adaptations to µG is a necessary first step to design data-driven interventions aimed at preserving astronauts’ immune defense during short- and long-term spaceflights. We employed a high-dimensional mass cytometry approach to characterize over 250 cell-specific functional responses in 18 innate and adaptive immune cell subsets exposed to 1G or simulated (s)µG using the Rotating Wall Vessel. A statistically stringent elastic net method produced a multivariate model that accurately stratified immune responses observed in 1G and sµG (p value 2E−4, cross-validation). Aspects of our analysis resonated with prior knowledge of human immune adaptations to µG, including the dampening of Natural Killer, CD4+ and CD8+ T cell responses. Remarkably, we found that sµG enhanced STAT5 signaling responses of immunosuppressive Tregs. Our results suggest µG exerts a dual effect on the human immune system, simultaneously dampening cytotoxic responses while enhancing Treg function. Our study provides a single-cell readout of sµG-induced immune dysfunctions and an analytical framework for future studies of human immune adaptations to human long-term spaceflights.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoko Kato ◽  
Harumi Katsumata ◽  
Ayumu Inutsuka ◽  
Akihiro Yamanaka ◽  
Tatsushi Onaka ◽  
...  

AbstractMultiple sequential actions, performed during parental behaviors, are essential elements of reproduction in mammalian species. We showed that neurons expressing melanin concentrating hormone (MCH) in the lateral hypothalamic area (LHA) are more active in rodents of both sexes when exhibiting parental nursing behavior. Genetic ablation of the LHA-MCH neurons impaired maternal nursing. The post-birth survival rate was lower in pups born to female mice with congenitally ablated MCH neurons under control of tet-off system, exhibiting reduced crouching behavior. Virgin female and male mice with ablated MCH neurons were less interested in pups and maternal care. Chemogenetic and optogenetic stimulation of LHA-MCH neurons induced parental nursing in virgin female and male mice. LHA-MCH GABAergic neurons project fibres to the paraventricular hypothalamic nucleus (PVN) neurons. Optogenetic stimulation of PVN induces nursing crouching behavior along with increasing plasma oxytocin levels. The hypothalamic MCH neural relays play important functional roles in parental nursing behavior in female and male mice.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Christos Nikolaou ◽  
Kerstin Muehle ◽  
Stephan Schlickeiser ◽  
Alberto Sada Japp ◽  
Nadine Matzmohr ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


Sign in / Sign up

Export Citation Format

Share Document