scholarly journals The mitotic protein NuMA plays a spindle-independent role in nuclear formation and mechanics

2020 ◽  
Author(s):  
Andrea Serra-Marques ◽  
Ronja Houtekamer ◽  
Dorine Hintzen ◽  
John T. Canty ◽  
Ahmet Yildiz ◽  
...  

AbstractEukaryotic cells typically form a single, round nucleus after mitosis, and failures to do so can compromise genomic integrity. How mammalian cells form such a nucleus remains incompletely understood. NuMA is a spindle protein whose disruption results in nuclear fragmentation. What role NuMA plays in nuclear integrity, or whether its perceived role stems from its spindle function, is unclear. Here, we use live imaging to demonstrate that NuMA plays a spindle-independent role in forming a single, round nucleus. NuMA keeps the decondensing chromosome mass compact at mitotic exit, and promotes a mechanically robust nucleus. NuMA’s C-terminus binds DNA in vitro and chromosomes in interphase, while its coiled-coil acts as a regulatory and structural hub: it prevents NuMA from binding chromosomes at mitosis, regulates its nuclear mobility and is essential for nuclear formation. Thus, NuMA plays a long-range structural role in building and maintaining an intact nucleus, as it does for the spindle, playing a protective role over the cell cycle.

2020 ◽  
Vol 219 (12) ◽  
Author(s):  
Andrea Serra-Marques ◽  
Ronja Houtekamer ◽  
Dorine Hintzen ◽  
John T. Canty ◽  
Ahmet Yildiz ◽  
...  

Eukaryotic cells typically form a single, round nucleus after mitosis, and failures to do so can compromise genomic integrity. How mammalian cells form such a nucleus remains incompletely understood. NuMA is a spindle protein whose disruption results in nuclear fragmentation. What role NuMA plays in nuclear integrity, and whether its perceived role stems from its spindle function, are unclear. Here, we use live imaging to demonstrate that NuMA plays a spindle-independent role in forming a single, round nucleus. NuMA keeps the decondensing chromosome mass compact at mitotic exit and promotes a mechanically robust nucleus. NuMA’s C terminus binds DNA in vitro and chromosomes in interphase, while its coiled-coil acts as a central regulatory and structural element: it prevents NuMA from binding chromosomes at mitosis, regulates its nuclear mobility, and is essential for nuclear formation. Thus, NuMA plays a structural role over the cell cycle, building and maintaining the spindle and nucleus, two of the cell’s largest structures.


2001 ◽  
Vol 276 (15) ◽  
pp. 12003-12011 ◽  
Author(s):  
Roberto Doliana ◽  
Simonetta Bot ◽  
Gabriella Mungiguerra ◽  
Anna Canton ◽  
Stefano Paron Cilli ◽  
...  

EMILIN (elastinmicrofibrilinterfaselocated Protein) is an elastic fiber-associated glycoprotein consisting of a self-interacting globular C1q domain at the C terminus, a short collagenous stalk, an extended region of potential coiled-coil structure, and an N-terminal cysteine-rich domain (EMI domain). Using the globular C1q domain as a bait in the yeast two-hybrid system, we have isolated a cDNA encoding a novel protein. Determination of the entire primary structure demonstrated that this EMILIN-binding polypeptide is highly homologous to EMILIN. The domain organization is superimposable, one important difference being a proline-rich (41%) segment of 56 residues between the potential coiled-coil region and the collagenous domain absent in EMILIN. The entire gene (localized on chromosome 18p11.3) was isolated from a BAC clone, and it is structurally almost identical to that of EMILIN (8 exons, 7 introns with identical phases at the exon/intron boundaries) but much larger (about 40versus8 kilobases) than that of EMILIN. Given these findings we propose to name the novel protein EMILIN-2 and the prototype member of this family EMILIN-1 (formerly EMILIN). The mRNA expression of EMILIN-2 is more restricted compared with that of EMILIN-1; highest levels are present in fetal heart and adult lung, whereas, differently from EMILIN-1, adult aorta, small intestine, and appendix show very low expression, and adult uterus and fetal kidney are negative. Finally, the EMILIN-2 protein is secreted extracellularly byin vitro-grown cells, and in accordance with the partial coexpression in fetal and adult tissues, the two proteins shown extensive but not absolute immunocolocalizationin vitro.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2853-2853
Author(s):  
Linsheng Zhang ◽  
Jenice D’Costa ◽  
Tanawan Kummalue ◽  
Isabel Moreno ◽  
Curt I. Civin ◽  
...  

Abstract CBFβ complexes with RUNX1/AML1 to form Core Binding Factor. CBFβ-SMMHC is expressed from the inv(16) or t(16;16) chromosome in 8% of AML cases. This fusion protein contains the majority of CBFβ linked to the α-helical rod domain of smooth muscle myosin heavy chain. CBFβ-SMMHC is thought to contribute to leukemogensis by dominantly inhibiting RUNX1/AML1. Inhibition of AML1 depends upon the integrity of a 28 amino acid region near the C-terminus of the SMMHC segment termed the Assembly Competence Domain (ACD). A homologous region is present in multiple myosins and is required for optimal multimerization of their respective rod domains. The ACD is located within a 63 residue "extended" ACD, which includes 12 residues N-terminal and 23 residues C-terminal to the ACD. The extended ACD was noted to have a more neutral charge than other segments of myosin rods. We have now carried out a mutagenic analysis of individual α-helices within or near the extended ACD and have assessed the effect of these mutations on the ability of CBFβ-SMMHC to multimerize in vitro and to inhibit endogenous AML1 activities in the Ba/F3 cell line and in normal murine myeloid progenitors. The 7 amino acids constituting a single turn of the rod domain α-helix are designated abcdefg. The a and d residues form a hydrophobic surface that mediates coiled-coil dimerization, the e and g residues often form salt bridges that stabilize the dimer, and the b, c and f residues are on the outer surface of the helix and are the best candidates for mediating multimerization. We have therefore mutated the bcf residues as a group in ten helices, N3, N1, A, B, C, D, E, F, G, and H. A–D constitutes the core, 28 residue ACD. N3 and N1 are three or one helix N-terminal to helix A. Mutation of N3 or N1 did not affect multimerization in low ionic strength or the ability of CBFβ-SMMHC to inhibit AML1-mediated G1 to S cell cycle progression in Ba/F3 cells. In contrast, mutation of helices A, B, C, D, E, F, G, or H both impaired multimerization in vitro and prevented cell cycle slowing in Ba/F3 cells. Mutants A–E are each located predominantly in the cell nucleus. In transduced murine myeloid progenitors, mutant N3 again behaved similar to intact CBFβ-SMMHC, mutant A also markedly slowed proliferation, mutant B had an intermediate effect, and mutants C, D, or E did not slow proliferation, each in three independent experiments. The increased activities of mutants A or B in the latter setting may reflect the fact that Ba/F3 cells accumulate three times faster than myeloid progenitors and so perhaps are more sensitive to subtle effects. Sin3A, a co-repressor shown to interact with CBFβ-SMMHC, retained the ability to bind mutants A–E. Analysis of mutants N1 and F–H for mSin3A binding, nuclear localization, and their effects on normal progenitor proliferation is in progress. Together, these findings indicate that a surface near the C-terminus of the CBFβ-SMMHC rod domain, encompassing much of the "extended ACD", is required for multimerization and inhibition of AML1. Helices N1 and H demarcate the boundaries of this surface, with helix H been the very last helix of the rod domain. Further characterization of the molecular interactions which allow this surface to mediate SMMHC multimerization may enable the rationale design of drugs for the therapy of AML associated with inv(16).


2011 ◽  
Vol 433 (3) ◽  
pp. 423-433 ◽  
Author(s):  
Fabian P. Vinke ◽  
Adam G. Grieve ◽  
Catherine Rabouille

The mammalian GRASPs (Golgi reassembly stacking proteins) GRASP65 and GRASP55 were first discovered more than a decade ago as factors involved in the stacking of Golgi cisternae. Since then, orthologues have been identified in many different organisms and GRASPs have been assigned new roles that may seem disconnected. In vitro, GRASPs have been shown to have the biochemical properties of Golgi stacking factors, but the jury is still out as to whether they act as such in vivo. In mammalian cells, GRASP65 and GRASP55 are required for formation of the Golgi ribbon, a structure which is fragmented in mitosis owing to the phosphorylation of a number of serine and threonine residues situated in its C-terminus. Golgi ribbon unlinking is in turn shown to be part of a mitotic checkpoint. GRASP65 also seems to be the key target of signalling events leading to re-orientation of the Golgi during cell migration and its breakdown during apoptosis. Interestingly, the Golgi ribbon is not a feature of lower eukaryotes, yet a GRASP homologue is present in the genome of Encephalitozoon cuniculi, suggesting they have other roles. GRASPs have no identified function in bulk anterograde protein transport along the secretory pathway, but some cargo-specific trafficking roles for GRASPs have been discovered. Furthermore, GRASP orthologues have recently been shown to mediate the unconventional secretion of the cytoplasmic proteins AcbA/Acb1, in both Dictyostelium discoideum and yeast, and the Golgi bypass of a number of transmembrane proteins during Drosophila development. In the present paper, we review the multiple roles of GRASPs.


1999 ◽  
Vol 19 (12) ◽  
pp. 8335-8343 ◽  
Author(s):  
Haiyun Cheng ◽  
Jim A. Rogers ◽  
Nancy A. Dunham ◽  
Thomas E. Smithgall

ABSTRACT The cytoplasmic protein-tyrosine kinase Fes has been implicated in cytokine signal transduction, hematopoiesis, and embryonic development. Previous work from our laboratory has shown that active Fes exists as a large oligomeric complex in vitro. However, when Fes is expressed in mammalian cells, its kinase activity is tightly repressed. The Fes unique N-terminal sequence has two regions with strong homology to coiled-coil-forming domains often found in oligomeric proteins. Here we show that disruption or deletion of the first coiled-coil domain upregulates Fes tyrosine kinase and transforming activities in Rat-2 fibroblasts and enhances Fes differentiation-inducing activity in myeloid leukemia cells. Conversely, expression of a Fes truncation mutant consisting only of the unique N-terminal domain interfered with Rat-2 fibroblast transformation by an activated Fes mutant, suggesting that oligomerization is essential for Fes activation in vivo. Coexpression with the Fes N-terminal region did not affect the transforming activity of v-Src in Rat-2 cells, arguing against a nonspecific suppressive effect. Taken together, these findings suggest a model in which Fes activation may involve coiled-coil-mediated interconversion of monomeric and oligomeric forms of the kinase. Mutation of the first coiled-coil domain may activate Fes by disturbing intramolecular coiled-coil interaction, allowing for oligomerization via the second coiled-coil domain. Deletion of the second coiled-coil domain blocks fibroblast transformation by an activated form of c-Fes, consistent with this model. These results provide the first evidence for regulation of a nonreceptor protein-tyrosine kinase by coiled-coil domains.


2015 ◽  
Vol 26 (8) ◽  
pp. 1491-1508 ◽  
Author(s):  
Robin Beaven ◽  
Nikola S. Dzhindzhev ◽  
Yue Qu ◽  
Ines Hahn ◽  
Federico Dajas-Bailador ◽  
...  

Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end–tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain–containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin–dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons.


2020 ◽  
Author(s):  
Tjaša Plaper ◽  
Jana Aupič ◽  
Petra Dekleva ◽  
Fabio Lapenta ◽  
Mateja Manček Keber ◽  
...  

AbstractCoiled-coil (CC) dimer-forming peptides are attractive designable modules for mediating protein association. Highly stable CCs are desired for biological activity regulation and assay. Here, we report the design and versatile applications of orthogonal CC dimer-forming peptides with a dissociation constant in the low nanomolar range. In vitro stability and specificity was confirmed in mammalian cells by enzyme reconstitution, transcriptional activation using a combination of DNA-binding and a transcriptional activation domain, and cellular-enzyme-activity regulation based on externally-added peptides. In addition to cellular regulation, coiled-coil-mediated reporter reconstitution was used for the detection of cell fusion mediated by the interaction between the spike protein of pandemic SARS-CoV2 and the ACE2 receptor. This assay can be used to investigate the mechanism and screen inhibition of viral spike protein-mediated fusion under the biosafety level 1conditions.


2002 ◽  
Vol 364 (3) ◽  
pp. 669-677 ◽  
Author(s):  
Daita NADANO ◽  
Jun NAKAYAMA ◽  
Shu-ichi MATSUZAWA ◽  
Taka-Aki SATO ◽  
Tsukasa MATSUDA ◽  
...  

Tastin was originally identified as an accessory protein for trophinin, a cell adhesion molecule that potentially mediates the initial attachment of the human embryo to the uterine epithelium. However, no information regarding tastin's function is available to date. The present study is aimed at understanding the role of tastin in mammalian cells. Hence, we examined the intracellular localization of tastin in human cell lines transfected with an expression vector encoding influenza virus haemagglutinin (HA)-tagged tastin. Ectopically expressed HA—tastin was seen as a pattern resembling the fibres that overlap the microtubular cytoskeleton. When HA—tastin-expressing cells were cultured with nocodazole to disrupt microtubule (MT) polymerization, tastin was dispersed to the entire cytoplasm and an MT sedimentation assay showed tastin in the supernatant; however, tastin was sedimented with polymeric MTs in cell lysates not treated with nocodazole. Sedimentation assays using HA—tastin mutants deleted at the N- or C-terminus revealed MT-binding activity associated with the N-terminal basic region of tastin. A yeast two-hybrid screen for tastin-interacting proteins identified Tctex-1, one of the light chains of cytoplasmic dynein, as a tastin-binding protein. Immunoprecipitation and Western-blot analysis confirmed binding of HA-tagged tastin and FLAG (Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys epitope)-tagged Tctex-1 in human cells. Furthermore, in vitro assays have demonstrated the binding between a fusion protein, glutathione S-transferase—Tctex-1, and in vitro translated 35S-labelled tastin. As Tctex-1 is a component of a MT-based molecular motor, these results suggest that tastin plays an important role in mammalian cells by associating with the microtubular cytoskeleton.


2010 ◽  
Vol 431 (3) ◽  
pp. 353-361 ◽  
Author(s):  
Ren-Wang Peng ◽  
Claudio Guetg ◽  
Eric Abellan ◽  
Martin Fussenegger

The interaction between SM (Sec1/Munc18) and SNARE (soluble N-ethylmaleimide-sensitive factor-attachment receptor) proteins constitutes the core eukaryotic membrane fusion machinery which manages exocytosis by mediating fusion of constitutively exocytic vesicles with the plasma membrane. However, mechanistic details on the nature and the physiological impact of SM–SNARE interactions remain largely elusive. Detailed characterization of the interaction profiles between Munc18b and its cognate SNAREs, Stx3 (syntaxin 3), SNAP-23 (soluble N-ethylmaleimide-attachment protein 23) and VAMP8 (vesicle-associated membrane protein 8), revealed that Munc18b binds Stx3, VAMP8 and the assembled core SNARE complex consisting of Stx3, SNAP-23 and VAMP8. Dissection of the Munc18b–Stx3 heterodimer suggested that Munc18b interacts with Stx3's conserved N-peptide as well as with its closed-conformation C-terminus encompassing the Habc domain, a linker and the SNARE (H3) motif. Deletion of the Habc domain or mutations interrupting the intramolecular binding of the Habc and H3 domains abrogated the Munc18b–Stx3 interaction. Although only the N-peptide deletion mutant, but not the soluble wild-type Stx3, is assembled into the core SNARE complex in the presence of Munc18b in vitro, ectopic expression of this SM protein increases constitutive exocytosis in mammalian cells. Our results suggest that Munc18b is functionally coupled to the assembly of exocytic SNARE complexes and increases exocytosis by interacting with the N-peptide and closed-conformation C-terminus of Stx3, thereby neutralizing the secretion-inhibitory effect of this SNARE.


1998 ◽  
Vol 72 (8) ◽  
pp. 6898-6901 ◽  
Author(s):  
Wankee Kim ◽  
Yao Tang ◽  
Yasushi Okada ◽  
Ted A. Torrey ◽  
Sisir K. Chattopadhyay ◽  
...  

ABSTRACT A cDNA clone encoding a cellular protein that interacts with murine leukemia virus (MuLV) Gag proteins was isolated from a T-cell lymphoma library. The sequence of the clone is identical to the C terminus of a cellular protein, KIF4, a microtubule-associated motor protein that belongs to the kinesin superfamily. KIF4-MuLV Gag associations have been detected in vitro and in vivo in mammalian cells. We suggest that KIF4 could be involved in Gag polyprotein translocation from the cytoplasm to the cell membrane.


Sign in / Sign up

Export Citation Format

Share Document