scholarly journals Crystal Structure of the Werner’s Syndrome Helicase

2020 ◽  
Author(s):  
Joseph A. Newman ◽  
Angeline E. Gavard ◽  
Simone Lieb ◽  
Madhwesh C. Ravichandran ◽  
Katja Hauer ◽  
...  

AbstractWerner syndrome helicase (WRN) plays important roles in multiple pathways of DNA repair and the maintenance of genome integrity. Recently, loss of WRN was identified as a strong synthetic lethal interaction for microsatellite instable (MSI) cancers making WRN a promising drug target. Yet, structural information for the helicase domain is lacking, which prevents structure-based design of drug molecules. In this study, we show that ATP binding and hydrolysis in the helicase domain are required for genome integrity and viability of MSI cancer cells. We then determined the crystal structure of an ADP bound form of the WRN helicase core at 2.2 Å resolution. The structure features an atypical mode of nucleotide binding with extensive contacts formed by motif VI, which in turn defines the relative positioning of the two RecA like domains. The structure features a novel additional β-hairpin in the second RecA and an unusual helical hairpin in the Zn2+ binding domain, and modelling DNA substrates based on existing RecQ DNA complexes suggests roles for these features in the binding of alternative DNA structures. We have further analysed possible interfaces formed from the interactions between the HRDC domain and the helicase core by NMR. Together, this study will facilitate the structure-based design of inhibitors against WRN helicase.

2020 ◽  
Vol 4 (1) ◽  
pp. e202000795
Author(s):  
Joseph A Newman ◽  
Angeline E Gavard ◽  
Simone Lieb ◽  
Madhwesh C Ravichandran ◽  
Katja Hauer ◽  
...  

Loss of WRN, a DNA repair helicase, was identified as a strong vulnerability of microsatellite instable (MSI) cancers, making WRN a promising drug target. We show that ATP binding and hydrolysis are required for genome integrity and viability of MSI cancer cells. We report a 2.2-Å crystal structure of the WRN helicase core (517–1,093), comprising the two helicase subdomains and winged helix domain but not the HRDC domain or nuclease domains. The structure highlights unusual features. First, an atypical mode of nucleotide binding that results in unusual relative positioning of the two helicase subdomains. Second, an additional β-hairpin in the second helicase subdomain and an unusual helical hairpin in the Zn2+ binding domain. Modelling of the WRN helicase in complex with DNA suggests roles for these features in the binding of alternative DNA structures. NMR analysis shows a weak interaction between the HRDC domain and the helicase core, indicating a possible biological role for this association. Together, this study will facilitate the structure-based development of inhibitors against WRN helicase.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Adam D. Brown ◽  
Alison B. Claybon ◽  
Alexander J. R. Bishop

Werner syndrome is a rare disorder that manifests as premature aging and age-related diseases.WRNis the gene mutated in WS, and is one of five human RecQ helicase family members. WS cells exhibit genomic instability and altered proliferation, andin vitrostudies suggest that WRN has a role in suppressing homologous recombination. However, more recent studies propose that other RecQ helicases (including WRN) promote early events of homologous recombination. To study the role of WRN helicase on spontaneous homologous recombination, we obtained a mouse with a deleted WRN helicase domain and combined it with thein vivopink-eyed unstable homologous recombination system. In this paper, we demonstrate that WRN helicase is not necessary for suppressing homologous recombinationin vivocontrary to previous reports using a similar mouse model.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Sheng-Chia Chen ◽  
Chi-Hung Huang ◽  
Chia Shin Yang ◽  
Tzong-Der Way ◽  
Ming-Chung Chang ◽  
...  

RecQ DNA helicases are key enzymes in the maintenance of genome integrity, and they have functions in DNA replication, recombination, and repair. In contrast to most RecQs, RecQ fromDeinococcus radiodurans(DrRecQ) possesses an unusual domain architecture that is crucial for its remarkable ability to repair DNA. Here, we determined the crystal structures of the DrRecQ helicase catalytic core and its ADP-bound form, revealing interdomain flexibility in its first RecA-like and winged-helix (WH) domains. Additionally, the WH domain of DrRecQ is positioned in a different orientation from that of theE. coliRecQ (EcRecQ). These results suggest that the orientation of the protein during DNA-binding is significantly different when comparing DrRecQ and EcRecQ.


Gerontology ◽  
2015 ◽  
Vol 62 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Jin-Sun Ryu ◽  
Hyeon-Sook Koo

Werner syndrome protein (WRN) is unusual among RecQ family DNA helicases in having an additional exonuclease activity. WRN is involved in the repair of double-strand DNA breaks via the homologous recombination and nonhomologous end joining pathways, and also in the base excision repair pathway. In addition, the protein promotes the recovery of stalled replication forks. The helicase activity is thought to unwind DNA duplexes, thereby moving replication forks or Holliday junctions. The targets of the exonuclease could be the nascent DNA strands at a replication fork or the ends of double-strand DNA breaks. However, it is not clear which enzyme activities are essential for repairing different types of DNA damage. Model organisms such as mice, flies, and worms deficient in WRN homologs have been investigated to understand the physiological results of defects in WRN activity. Premature aging, the most remarkable characteristic of Werner syndrome, is also seen in the mutant mice and worms, and hypersensitivity to DNA damage has been observed in WRN mutants of all three model organisms, pointing to conservation of the functions of WRN. In the nematode Caenorhabditis elegans, the WRN homolog contains a helicase domain but no exonuclease domain, so that this animal is very useful for studying the in vivo functions of the helicase without interference from the activity of the exonuclease. Here, we review the current status of investigations of C. elegans WRN-1 and discuss its functional differences from the mammalian homologs.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Guobang Li ◽  
Xiaoxia Liu ◽  
Mengyuan Yang ◽  
Guangshun Zhang ◽  
Zhengyang Wang ◽  
...  

ABSTRACT African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the “core domain” and the N-terminal “arm domain.” The “arm domain” contains the residues from M1 to N83, and the “core domain” contains the residues from N84 to A273. A structure analysis reveals that the “core domain” shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the “arm domain” is unique to ASFV. Further, experiments indicated that the “arm domain” plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen. IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique “arm domain” has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10381
Author(s):  
Rohit Nandakumar ◽  
Valentin Dinu

Throughout the history of drug discovery, an enzymatic-based approach for identifying new drug molecules has been primarily utilized. Recently, protein–protein interfaces that can be disrupted to identify small molecules that could be viable targets for certain diseases, such as cancer and the human immunodeficiency virus, have been identified. Existing studies computationally identify hotspots on these interfaces, with most models attaining accuracies of ~70%. Many studies do not effectively integrate information relating to amino acid chains and other structural information relating to the complex. Herein, (1) a machine learning model has been created and (2) its ability to integrate multiple features, such as those associated with amino-acid chains, has been evaluated to enhance the ability to predict protein–protein interface hotspots. Virtual drug screening analysis of a set of hotspots determined on the EphB2-ephrinB2 complex has also been performed. The predictive capabilities of this model offer an AUROC of 0.842, sensitivity/recall of 0.833, and specificity of 0.850. Virtual screening of a set of hotspots identified by the machine learning model developed in this study has identified potential medications to treat diseases caused by the overexpression of the EphB2-ephrinB2 complex, including prostate, gastric, colorectal and melanoma cancers which are linked to EphB2 mutations. The efficacy of this model has been demonstrated through its successful ability to predict drug-disease associations previously identified in literature, including cimetidine, idarubicin, pralatrexate for these conditions. In addition, nadolol, a beta blocker, has also been identified in this study to bind to the EphB2-ephrinB2 complex, and the possibility of this drug treating multiple cancers is still relatively unexplored.


2020 ◽  
Vol 64 (5) ◽  
pp. 819-830
Author(s):  
Joseph A. Newman ◽  
Opher Gileadi

Abstract Helicases are enzymes that use the energy derived from ATP hydrolysis to catalyze the unwinding of DNA or RNA. The RecQ family of helicases is conserved through evolution from prokaryotes to higher eukaryotes and plays important roles in various DNA repair pathways, contributing to the maintenance of genome integrity. Despite their roles as general tumor suppressors, there is now considerable interest in exploiting RecQ helicases as synthetic lethal targets for the development of new cancer therapeutics. In this review, we summarize the latest developments in the structural and mechanistic study of RecQ helicases and discuss their roles in various DNA repair pathways. Finally, we consider the potential to exploit RecQ helicases as therapeutic targets and review the recent progress towards the development of small molecules targeting RecQ helicases as cancer therapeutics.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Alisson C Cardoso ◽  
Ana H Pereira ◽  
Andre L Ambrosio ◽  
Silvio R Consonni ◽  
Sandra M Dias ◽  
...  

Members of MEF2 (Myocyte Enhancer Factor 2) family of transcription factors are major regulators of cardiac development and homeostasis. Their functions are regulated at several levels, including the association with a variety of protein partners. We have previously shown that FAK (Focal Adhesion Kinase) regulates the stretch-induced activation of MEF2 in cardiomyocytes. But, the molecular mechanisms, involved in this process, are unclear. Here, we integrated biochemical, imaging and structural analyses to characterize a novel interaction between MEF2 and FAK. An association between MEF2 and FAK was detected by co-immunoprecipitation in the extracts of stretched cardiomyocytes (10%, 60Hz, 2 hours). MEF2 and FAK staining were co-localized in the nuclei of stretched cells. Pull down assays indicated that the Focal Adhesion Targeting (FAT) domain is sufficient to confer FAK interaction with MEF2. Gene reporter assays indicated that the interaction with FAK enhances the MEF2C transcriptional activity in cultured cardiomyocytes. Also, we present a 2.9-Å X-ray crystal structure for the FAK_FAT domain bound to MEF2C (1-95), comprised by the MADS box/MEF2 domain. The structural information, when used in combination with biochemical studies, small-angle X-ray scattering (SAXS) data and reporter gene assay, lead to a mechanistic model describing how FAK binds to MEF2C and stimulates its transcription function in cardiomyocytes. We further validated this model by showing that the binding of FAK to MEF2C is essential for the hypertrophy of cardiomyocyte in response to mechanical stress. Our results present FAK as a new positive regulator of MEF2, implicated in the fine control of the signal transduction between focal adhesions and the nucleus of cardiac myocytes during mechanical stress.


2020 ◽  
Vol 86 (19) ◽  
Author(s):  
Gongquan Liu ◽  
Weiwei Wang ◽  
Fangyuan He ◽  
Peng Zhang ◽  
Ping Xu ◽  
...  

ABSTRACT Bacteria degrade nicotine mainly using pyridine and pyrrolidine pathways. Previously, we discovered a hybrid of the pyridine and pyrrolidine pathways (the VPP pathway) in Pseudomonas geniculata N1 and characterized its key enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD). It catalyzes oxidative deamination of 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde-pyridine, which is the crucial step connecting upstream and downstream portions of the VPP pathway. We determined the crystal structure of wild-type HisD to 2.6 Å. HisD is a monomer that contains a flavin mononucleotide, an iron-sulfur cluster, and ADP. On the basis of sequence alignment and structure comparison, a difference has been found among HisD, closely related trimethylamine dehydrogenase (TMADH), and histamine dehydrogenase (HADH). The flavin mononucleotide (FMN) cofactor is not covalently bound to any residue, and the FMN isoalloxazine ring is planar in HisD compared to TMADH or HADH, which forms a 6-S-cysteinyl flavin mononucleotide cofactor and has an FMN isoalloxazine ring in a “butterfly bend” conformation. Based on the structure, docking study, and site-directed mutagenesis, the residues Glu60, Tyr170, Asp262, and Trp263 may be involved in substrate binding. The expanded understanding of the substrate binding mode from this study may guide rational engineering of such enzymes for biodegradation of potential pollutants or for bioconversion to generate desired products. IMPORTANCE Nicotine is a major tobacco alkaloid in tobacco waste. Pyridine and pyrrolidine pathways are the two best-elucidated nicotine metabolic pathways; Pseudomonas geniculata N1 catabolizes nicotine via a hybrid between the pyridine and pyrrolidine pathways. The crucial enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD), links the upstream and downstream portions of the VPP pathway; however, there is little structural information about this important enzyme. In this study, we determined the crystal structure of HisD from Pseudomonas geniculata N1. Its basic insights about the structure may help us to guide the engineering of such enzymes for bioremediation and bioconversion applications.


2020 ◽  
Vol 76 (9) ◽  
pp. 876-888
Author(s):  
Ravi K. Lokareddy ◽  
Ying-Hui Ko ◽  
Nathaniel Hong ◽  
Steven G. Doll ◽  
Marcin Paduch ◽  
...  

The genome-packaging motor of tailed bacteriophages and herpesviruses is a multisubunit protein complex formed by several copies of a large (TerL) and a small (TerS) terminase subunit. The motor assembles transiently at the portal protein vertex of an empty precursor capsid to power the energy-dependent packaging of viral DNA. Both the ATPase and nuclease activities associated with genome packaging reside in TerL. Structural studies of TerL from bacteriophage P22 have been hindered by the conformational flexibility of this enzyme and its susceptibility to proteolysis. Here, an unbiased, synthetic phage-display Fab library was screened and a panel of high-affinity Fabs against P22 TerL were identified. This led to the discovery of a recombinant antibody fragment, Fab4, that binds a 33-amino-acid α-helical hairpin at the N-terminus of TerL with an equilibrium dissociation constant K d of 71.5 nM. A 1.51 Å resolution crystal structure of Fab4 bound to the TerL epitope (TLE) together with a 1.15 Å resolution crystal structure of the unliganded Fab4, which is the highest resolution ever achieved for a Fab, elucidate the principles governing the recognition of this novel helical epitope. TLE adopts two different conformations in the asymmetric unit and buries as much as 1250 Å2 of solvent-accessible surface in Fab4. TLE recognition is primarily mediated by conformational changes in the third complementarity-determining region of the Fab4 heavy chain (CDR H3) that take place upon epitope binding. It is demonstrated that TLE can be introduced genetically at the N-terminus of a target protein, where it retains high-affinity binding to Fab4.


Sign in / Sign up

Export Citation Format

Share Document