scholarly journals Ripasudil in a model of pigmentary glaucoma

2020 ◽  
Author(s):  
C Wang ◽  
Y Dang ◽  
S Waxman ◽  
Y Hong ◽  
P Shah ◽  
...  

AbstractPurposeTo investigate the effects of Ripasudil (K-115), a Rho-kinase inhibitor, in a porcine model of pigmentary glaucoma.MethodsHallmark features of trabecular meshwork (TM), the principle structure of the outflow system affected in this model, were analyzed. In vitro TM cells and ex vivo perfused eyes were subjected to pigment dispersion followed by K-115 treatment (PK115). PK115 was compared to sham-treated controls (C) and pigment (P). Cytoskeletal alterations were assessed by F-actin labeling. TM cell phagocytosis of fluorescent targets was evaluated by flow cytometry. Cell migration was studied with a wound-healing assay. Intraocular pressure was continuously monitored and compared to after the establishment of the pigmentary glaucoma model and after treatment with K-115.ResultsIn vitro, the percentage of cells with stress fibers increased in response to pigment but declined sharply after treatment with K-115 (P: 32.8 +/- 2.9%; PK115: 11.6 +/- 3.3%, P < 0.001). Phagocytosis first declined but recovered after K-115 (P: 25.7+/-2.1%, PK115: 33.4+/-0.8%, P <0.01). Migration recuperated at 12h with K-115 treatment (P: 19.1+/-4.6 cells/high-power field, PK115: 42.5+/-1.6 cells/high-power field, P <0.001). Ex vivo, eyes became hypertensive from pigment dispersion but were normotensive after treatment with K-115 (P: 20.3 +/- 1.2 mmHg, PK115: 8.9 +/- 1.7 mmHg; P< 0.005).ConclusionIn vitro, K-115 reduced TM stress fibers, restored phagocytosis, and restored migration of TM cells. Ex vivo, K-115 normalized intraocular pressure.

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 174 ◽  
Author(s):  
Yalong Dang ◽  
Susannah Waxman ◽  
Chao Wang ◽  
Priyal Shah ◽  
Ralitsa T. Loewen ◽  
...  

Background: Outflow regulation and phagocytosis are key functions of the trabecular meshwork (TM), but it is not clear how the two are related in secondary open angle glaucomas characterized by an increased particle load. We hypothesized that diminished TM phagocytosis is not the primary cause of early ocular hypertension and recreated pigment dispersion in a porcine ex vivo model. Methods: Sixteen porcine anterior chamber cultures received a continuous infusion of pigment granules (Pg), while 16 additional anterior chambers served as controls (C). Pressure transducers recorded the intraocular pressure (IOP). The phagocytic capacity of the trabecular meshwork was determined by fluorescent microspheres. Results: The baseline IOPs in Pg and C were similar (P=0.82). A significant IOP elevation occurred in Pg at 48, 120, and 180 hours (all P<0.01, compared to baseline). The pigment did not cause a reduction in TM phagocytosis at 48 hours, when the earliest IOP elevation occurred, but at 120 hours onward (P=0.001 compared to C). This reduction did not result in an additional IOP increase at 120 or 180 hours compared to the first IOP elevation at 48 hours (P>0.05). Conclusions: In this porcine model of pigmentary glaucoma, an IOP elevation occurs much earlier than when phagocytosis fails, suggesting that two separate mechanisms might be at work.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 174
Author(s):  
Yalong Dang ◽  
Susannah Waxman ◽  
Chao Wang ◽  
Priyal Shah ◽  
Ralitsa T. Loewen ◽  
...  

Background: Outflow regulation and phagocytosis are key functions of the trabecular meshwork (TM), but it is not clear how the two are related in secondary open angle glaucomas characterized by an increased particle load. We hypothesized that diminished TM phagocytosis is not the primary cause of early ocular hypertension and recreated pigment dispersion in a porcine ex vivo model. Methods: Sixteen porcine anterior chamber cultures received a continuous infusion of pigment granules (Pg), while 16 additional anterior chambers served as controls (C). Pressure transducers recorded the intraocular pressure (IOP). The phagocytic capacity of the trabecular meshwork was determined by fluorescent microspheres. Results: The baseline IOPs in Pg and C were similar (P=0.82). A significant IOP elevation occurred in Pg at 48, 120, and 180 hours (all P<0.01, compared to baseline). The pigment did not cause a reduction in TM phagocytosis at 48 hours when the earliest IOP elevation occurred, but at 120 hours onward (P=0.001 compared to C). This reduction did not result in an additional IOP increase at 120 or 180 hours compared to the first IOP elevation at 48 hours (P>0.05). Conclusions: In this porcine model of pigmentary glaucoma, an IOP elevation occurs much earlier than when phagocytosis fails, suggesting that two separate mechanisms might be at work.


2017 ◽  
Author(s):  
Yalong Dang ◽  
Susannah Waxman ◽  
Chao Wang ◽  
Ralista T. Loewen ◽  
Ming Sun ◽  
...  

AbstractPigment dispersion syndrome can lead to pigmentary glaucoma (PG), a poorly understood condition of younger, myopic eyes with fluctuating, high intraocular pressure (IOP). The absence of a model similar in size and behavior to human eyes has made it difficult to investigate its pathogenesis. Here, we present a porcine ex vivo model that recreates the features of PG including intraocular hypertension, pigment accumulation in the trabecular meshwork and relative failure of phagocytosis. Inin vitromonolayer cultures as well as inex vivoeye perfusion cultures, we found that the trabecular meshwork (TM) cells that regulate outflow, form actin stress fibers and have a decreased phagocytosis. Gene expression microarray and pathway analysis indicated key roles of RhoA in regulating the TM cytoskeleton, motility, and phagocytosis thereby providing new targets for PG therapy.


2017 ◽  
Author(s):  
Yalong Dang ◽  
Susannah Waxman ◽  
Chao Wang ◽  
Ralitsa T. Loewen ◽  
Nils A. Loewen

AbstractPurposeOutflow regulation and phagocytosis are key functions of the trabecular meshwork (TM), but it is not clear how the two are related in secondary open angle glaucomas characterized by an increased particle load. We hypothesized that diminished TM phagocytosis is not the primary cause of early ocular hypertension and recreated pigment dispersion in a porcine ex vivo model.Materials and MethodsSixteen porcine anterior chamber cultures received a continuous infusion of pigment granules (P), while 16 additional anterior chambers served as controls (C). Pressure transducers recorded the intraocular pressure (IOP). The phagocytic capacity of the trabecular meshwork was determined by fluorescent microspheres.ResultsThe baseline IOPs in P and C were similar (P=0.82). A significant IOP elevation occurred in P at 48, 120, and 180 hours (all P<0.01, compared to baseline). The pigment did not cause a reduction in TM phagocytosis at 48 hours, when the earliest IOP elevation occurred, but at 120 hours onward (P=0.001 compared to C). This reduction did not result in an additional IOP increase at 120 or 180 hours compared to the first IOP elevation at 48 hours (P>0.05).ConclusionIn this porcine model of pigmentary glaucoma, an IOP elevation occurs much earlier than when phagocytosis fails, suggesting that two separate mechanisms might be at work.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Holly C Cappelli ◽  
Roslin J Thoppil ◽  
Ravi K Adapala ◽  
Sailaja Paruchuri ◽  
Charles K Thodeti

Angiogenesis, the formation new blood vessels from pre-existing ones, is critical for maintenance of normal cardiovascular physiology. However, excessive or insufficient angiogenesis can contribute to various diseases including cancer, atherosclerosis, and retinopathy. While the mechanism by which angiogenesis occurs is well established, little is known about the mechanisms that negatively regulate this process. Therefore, we investigated the role of mechanosensitive ion channel, TRPV4, in the regulation of angiogenesis by employing in vitro, ex vivo, and in vivo techniques. In the present study, we first cultured aortic ring explants isolated from wild-type (WT) and TRPV4KO mice and found a significant increase in the sprouting from TRPV4KO aortic rings after 5 days. Next, we found that endothelial cells (EC) isolated from TRPV4KO mice (TRPV4KO EC) exhibited increased proliferation, migration, as well as abnormal angiogenesis in vitro, compared to their WT counterparts. Further, in vivo Matrigel plug assays revealed abnormal vascular growth in TRPV4KO mice. Mechanistically, we found that absence of TRPV4 results in a significant increase in basal Rho activity and that pharmacological inhibition of the Rho/Rho kinase pathway was able to normalize the abnormal tube formation exhibited by TRPV4KO EC in vitro . To confirm these findings, we examined tumor growth in TRPV4KO mice treated with Rho kinase inhibitor, Y-27632, and anti-cancer drug Cisplatin, alone and in combination. We found that Y-27632 treatment, in conjunction with Cisplatin but not alone, was able to significantly reduce the abnormal tumor growth seen in TRPV4KO mice, suggesting that Rho kinase inhibition may have normalized the tumor vasculature and improved the delivery of Cisplatin. Taken together, these data suggest that TRPV4 is a negative regulator of angiogenesis and potentially a novel target for pathological and/or therapeutic angiogenesis.


Author(s):  
Yalong Dang ◽  
Chao Wang ◽  
Priyal Shah ◽  
Susannah Waxman ◽  
Ralitsa T. Loewen ◽  
...  

Purpose: This study investigated the hypotensive effect of RKI-1447, a Rho kinase inhibitor, in a porcine ex vivo pigmentary glaucoma model. Methods: Twenty-eight porcine anterior chambers were perfused with medium supplemented with 1.67 &times; 107 pigment particles/mL for 48 hours before treatment with RKI-1447 (n = 16) or vehicle control (n = 12). Intraocular pressure (IOP) was recorded and outflow facility was calculated. Primary trabecular meshwork cells were exposed to RKI-1447 or vehicle control; effects on the cytoskeleton, motility, and phagocytosis were evaluated. Result: Compared to baseline, the perfusion of pigment caused a significant increase in IOP in the RKI-1447 group (P = 0.003) at 48 hours. Subsequent treatment with RKI-1447 significantly reduced IOP from 20.14 &plusmn; 2.59 mmHg to 13.38 &plusmn; 0.91 mmHg (P = 0.02). Pigment perfusion reduced the outflow facility from 0.27 &plusmn; 0.03 at baseline to 0.18 &plusmn; 0.02 at 48 hours (P &lt; 0.001). This was partially reversed with RKI-1447. RKI-1447 caused no apparent histological changes in the micro- or macroscopic TM appearance. RKI-1447-treated primary TM cells showed significant disruption of the actin cytoskeleton both in the presence and absence of pigment (P &lt; 0.001) but no effect on TM migration was observed. Pigment-treated TM cells exhibited a reduction in TM phagocytosis, which RKI-1447 reversed. Conclusion: RKI-1447 significantly reduces IOP by disrupting TM stress fibers and increasing TM phagocytosis. These features may make it useful for the treatment of secondary glaucomas with an increased phagocytic load.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Thomas A. Hogerheyde ◽  
Shuko Suzuki ◽  
Jennifer Walshe ◽  
Laura J. Bray ◽  
Sally A. Stephenson ◽  
...  

Scaffolds prepared from silk fibroin derived from cocoons of the domesticated silkworm mothBombyx morihave demonstrated potential to support the attachment and growth of human limbal epithelial (HLE) cellsin vitro. In this study, we attempted to further optimize protocols to promote the expansion of HLE cells onB. morisilk fibroin- (BMSF-) based scaffolds. BMSF films were initially coated with different extracellular matrix proteins and then analysed for their impact on corneal epithelial cell adhesion, cell morphology, and culture confluency. Results showed that collagen I, collagen III, and collagen IV consistently improved HCE-T cell adherence, promoted an elongated cell morphology, and increased culture confluency. By contrast, ECM coating had no significant effect on the performance of primary HLE cells cultured on BMSF films. In the second part of this study, primary HLE cells were grown on BMSF films in the presence of medium (SHEM) supplemented with keratinocyte growth factor (KGF) and the Rho kinase inhibitor, Y-27632. The results demonstrated that SHEM medium supplemented with KGF and Y-27632 dramatically increased expression of corneal differentiation markers, keratin 3 and keratin 12, whereas expression of the progenitor marker, p63, did not appear to be significantly influenced by the choice of culture medium.


2010 ◽  
Vol 16 (1) ◽  
pp. 120-128 ◽  
Author(s):  
Vy Lam ◽  
Tetsuro Wakatsuki

Current pharmaceutical compound screening systems rely on cell-based assays to identify therapeutic candidates and potential toxicities. However, cells grown on 2D substrata or in suspension do not exhibit the mechanical or physiological properties of cells in vivo. To address this limitation, the authors developed an in vitro, high-throughput, 3D hydrogel tissue construct (HTC)–based assay system to quantify cell and tissue mechanical properties and multiple parameters of physiology. HTC mechanics was quantified using an automated device, and physiological status was assessed using spectroscopy-based indicators that were read on microplate readers. To demonstrate the application of this system, the authors screened 4 test compounds—rotenone (ROT), cytochalasin D (CD), 2,4-dinitrophenol (DNP), and Rho kinase inhibitor (H-1152)—for their ability to modulate HTC contractility without affecting actin integrity, mitochondrial membrane potential (MMP), or viability. All 4 compounds dose-dependently reduced HTC contractility. However, ROT was toxic, DNP dissipated MMP, and CD reduced both intracellular F-actin and viability. H-1152 was found to be the best candidate compound since it reduced HTC contractility with minimal side effects. The authors propose that their HTC-based assay system can be used to screen for compounds that modulate HTC contractility and assess the underlying physiological mechanism(s) of compound activity and toxicity.


2002 ◽  
Vol 282 (3) ◽  
pp. G461-G469 ◽  
Author(s):  
Ya-Ping Fan ◽  
Rajinder N. Puri ◽  
Satish Rattan

Effect of ANG II was investigated in in vitro smooth muscle strips and in isolated smooth muscle cells (SMC). Among different species, rat internal and sphincter (IAS) smooth muscle showed significant and reproducible contraction that remained unmodified by different neurohumoral inhibitors. The AT1antagonist losartan but not AT2 antagonist PD-123319 antagonized ANG II-induced contraction of the IAS smooth muscle and SMC. ANG II-induced contraction of rat IAS smooth muscle and SMC was attenuated by tyrosine kinase inhibitors genistein and tyrphostin, protein kinase C (PKC) inhibitor H-7, Ca2+ channel blocker nicardipine, Rho kinase inhibitor Y-27632 or p44/42mitogen-activating protein kinase (MAPK44/42) inhibitor PD-98059. Combinations of nicardipine and H-7, Y-27632, and PD-98059 caused further attenuation of the ANG II effects. Western blot analyses revealed the presence of both AT1 and AT2receptors. We conclude that ANG II causes contraction of rat IAS smooth muscle by the activation of AT1 receptors at the SMC and involves multiple intracellular pathways, influx of Ca2+, and activation of PKC, Rho kinase, and MAPK44/42.


Sign in / Sign up

Export Citation Format

Share Document