scholarly journals Binding Mechanism of the Matrix Domain of HIV-1 Gag on Lipid Membranes

2020 ◽  
Author(s):  
V. Monje-Galvan ◽  
Gregory A. Voth

AbstractAggregation of the HIV-1 Gag protein onto the plasma membrane (PM) enables viral budding and infection propagation. Gag assembly at the membrane interface is mediated by its matrix domain (MA), the Myristoylated (Myr) N-terminus. MA targets the PM through electrostatic interactions, mainly at its highly-basic-region (HBR). The mechanism of Myr insertion and its role in protein-membrane dynamics remains unclear. Using all-atom molecular dynamics, we examined an MA unit in the vicinity of lipid bilayers that model different characteristics of the PM. Interaction with PIP2 and PS lipids is highly favored around the HBR, and is enough to keep the protein bound. Additionally, we simulated three MA units near our bilayers and quantified the collective effects of free monomers vs. formed trimers on Myr insertion events. Micro-second-long trajectories allowed us to observe Myr insertion, propose a mechanism, quantify specific interactions with lipids, and examine the response of the local membrane environment.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Viviana Monje-Galvan ◽  
Gregory A Voth

Specific protein-lipid interactions are critical for viral assembly. We present a molecular dynamics simulation study on the binding mechanism of the membrane targeting domain of HIV-1 Gag protein. The matrix (MA) domain drives Gag onto the plasma membrane through electrostatic interactions at its highly-basic-region (HBR), located near the myristoylated (Myr) N-terminus of the protein. Our study suggests Myr insertion is involved in the sorting of membrane lipids around the protein-binding site to prepare it for viral assembly. Our realistic membrane models confirm interactions with PIP2 and PS lipids are highly favored around the HBR and are strong enough to keep the protein bound even without Myr insertion. We characterized Myr insertion events from microsecond trajectories and examined the membrane response upon initial membrane targeting by MA. Insertion events only occur with one of the membrane models, showing a combination of surface charge and internal membrane structure modulate this process.


2005 ◽  
Vol 79 (14) ◽  
pp. 9134-9144 ◽  
Author(s):  
Eva Gottwein ◽  
Hans-Georg Kräusslich

ABSTRACT Ubiquitin is important for the release of human immunodeficiency virus type 1 (HIV-1) and several other retroviruses, but the functional significance of Gag ubiquitination is unknown. To address this problem, we decided to analyze Gag ubiquitination in detail. A low percentage of the HIV-1 p6 protein has previously been shown to be ubiquitinated, and published mutagenesis data suggested that Gag ubiquitination is largely lost upon mutation of the two lysine residues in p6. In this study, we show that Gag proteins lacking the p6 domain or the two lysine residues within p6 are ubiquitinated at levels comparable to those of the wild-type Gag protein. We detected monoubiquitinated forms of the matrix (MA), capsid (CA), and nucleocapsid (NC) proteins in mature virus preparations. Protease digestion of Gag polyproteins extracted from immature virions indicated that ubiquitinated MA, CA, and possibly NC are as abundant as ubiquitinated p6. The HIV-1 late-domain motifs PTAP and LRSLF were not required for Gag ubiquitination, and mutation of the PTAP motif even resulted in an increase in the amount of Gag-Ub conjugates detected. Finally, at steady state, ubiquitinated Gag proteins were not enriched in either membrane-associated or virus-derived Gag fractions. In summary, these results indicate that HIV-1 Gag can be monoubiquitinated in all domains and that ubiquitination of lysine residues outside p6 may thus contribute to viral release and/or infectivity.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 394 ◽  
Author(s):  
Tomas Kroupa ◽  
Siddhartha A. K. Datta ◽  
Alan Rein

Viral genomic RNA is packaged into virions with high specificity and selectivity. However, in vitro the Gag specificity towards viral RNA is obscured when measured in buffers containing physiological salt. Interestingly, when the binding is challenged by increased salt concentration, the addition of competing RNAs, or introducing mutations to Gag protein, the specificity towards viral RNA becomes detectable. The objective of this work was to examine the contributions of the individual HIV-1 Gag polyprotein domains to nonspecific and specific RNA binding and stability of the initial protein-RNA complexes. Using a panel of Gag proteins with mutations disabling different Gag-Gag or Gag-RNA interfaces, we investigated the distinct contributions of individual domains which distinguish the binding to viral and nonviral RNA by measuring the binding of the proteins to RNAs. We measured the binding affinity in near-physiological salt concentration, and then challenged the binding by increasing the ionic strength to suppress the electrostatic interactions and reveal the contribution of specific Gag–RNA and Gag–Gag interactions. Surprisingly, we observed that Gag dimerization and the highly basic region in the matrix domain contribute significantly to the specificity of viral RNA binding.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Naresh Yandrapalli ◽  
Quentin Lubart ◽  
Hanumant S. Tanwar ◽  
Catherine Picart ◽  
Johnson Mak ◽  
...  

2016 ◽  
Author(s):  
Naresh Yandrapalli ◽  
Quentin Lubart ◽  
Hanumant S. Tanwar ◽  
Catherine Picart ◽  
Johnson Mak ◽  
...  

AbstractThe self-assembly of HIV-1 Gag polyprotein at the inner leaflet of the cell host plasma membrane is the key orchestrator of virus assembly. The binding between Gag and the plasma membrane is mediated by specific interaction of the Gag matrix domain and the PI(4,5)P2 lipid (PIP2). It is unknown whether this interaction could lead to local reorganization of the plasma membrane lipids. In this study, using model membranes, we examined the ability of Gag to segregate specific lipids upon self-assembly. We show for the first time that Gag self-assembly is responsible for the formation of PIP2 lipid nanoclusters, enriched in cholesterol but not in sphingomyelin. We also show that Gag mainly partition into liquid-disordered domains of these lipid membranes. Our work strongly suggests that, instead of targeting pre-existing plasma membrane lipid domains, Gag is more prone to generate PIP2/Cholesterol lipid nanodomains at the inner leaflet of the plasma membrane during early events of virus assembly.


Sign in / Sign up

Export Citation Format

Share Document