scholarly journals DONSON, a gene responsible for microcephalic primordial dwarfism, ensures proper centriole duplication cycle by maintaining centriole engagement during interphase

2020 ◽  
Author(s):  
Kyohei Matsuhashi ◽  
Koki Watanabe ◽  
Kei K. Ito ◽  
Takumi Chinen ◽  
Shoji Hata ◽  
...  

AbstractMicrocephalic primordial dwarfism (MPD) is a genetic disorder characterized by short stature and microcephaly. MPD-related genes are known to regulate centrosome biogenesis, DNA replication or the DNA damage response. Although some of the MPD-related proteins that are implicated in DNA replication localize to centrosomes, how these proteins affect centrosome biogenesis remains mostly elusive. Here, we revisit the potential function of these DNA replication mediators in human centrosome biogenesis. Among these proteins, depletion of DONSON leads to excessive number of centrosomes in interphase, caused by precocious centriole disengagement. Such disengaged centrioles are converted to centrosomes, followed by centriole reduplication during interphase. These extra centrosomes lead to abnormal spindle formation and chromosome segregation errors. Importantly, similar defects are observed in MPD patients’ cells with DONSON mutations, suggesting a possible cause of the disease. Overall, these results indicate that DONSON is involved in regulating the centriole duplication cycle by ensuring the maintenance of centriole engagement during interphase.

2021 ◽  
Author(s):  
Swathy Babu ◽  
Yuki Takeuchi ◽  
Ichiro Masai

Btg3-associated nuclear protein (Banp) was originally identified as a nuclear matrix-associated protein and it functions as a tumor suppressor. At molecular level, Banp regulates transcription of metabolic genes via a CGCG-containing motif called the Banp motif. However, its physiological roles in embryonic development are unknown. Here we report that Banp is indispensable for DNA damage response and chromosome segregation during mitosis. Zebrafish banp mutants show mitotic arrest and apoptosis in developing retina. We found that DNA replication stress and tp53-dependent DNA damage responses were activated to induce apoptosis in banp mutants, suggesting that Banp is required for integrity of DNA replication and DNA damage repair. Furthermore, in banp mutants, chromosome segregation was not smoothly processed from prometaphase to anaphase, leading to a prolonged M-phase. Our RNA- and ATAC-sequencing identified 31 candidates for direct Banp target genes that carry the Banp motif. Interestingly, two chromosome segregation regulators, cenpt and ncapg, are included in this list. Thus, Banp directly regulates transcription of cenpt and ncapg to promote chromosome segregation during mitosis. Our findings provide the first in vivo evidence that Banp is required for cell-cycle progression and cell survival by regulating DNA damage responses and chromosome segregation during mitosis.


2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Kei K. Ito ◽  
Koki Watanabe ◽  
Haruki Ishida ◽  
Kyohei Matsuhashi ◽  
Takumi Chinen ◽  
...  

Centrioles duplicate in interphase only once per cell cycle. Newly formed centrioles remain associated with their mother centrioles. The two centrioles disengage at the end of mitosis, which licenses centriole duplication in the next cell cycle. Therefore, timely centriole disengagement is critical for the proper centriole duplication cycle. However, the mechanisms underlying centriole engagement during interphase are poorly understood. Here, we show that Cep57 and Cep57L1 cooperatively maintain centriole engagement during interphase. Codepletion of Cep57 and Cep57L1 induces precocious centriole disengagement in interphase without compromising cell cycle progression. The disengaged daughter centrioles convert into centrosomes during interphase in a Plk1-dependent manner. Furthermore, the centrioles reduplicate and the centriole number increases, which results in chromosome segregation errors. Overall, these findings demonstrate that the maintenance of centriole engagement by Cep57 and Cep57L1 during interphase is crucial for the tight control of centriole copy number and thus for proper chromosome segregation.


2020 ◽  
Author(s):  
Kei K. Ito ◽  
Koki Watanabe ◽  
Haruki Ishida ◽  
Kyohei Matsuhashi ◽  
Takumi Chinen ◽  
...  

Centrioles duplicate in the interphase only once per cell cycle. Newly formed centrioles remain associated with their mother centrioles. The two centrioles disengage at the end of mitosis, which licenses centriole duplication in the next cell cycle. Therefore, timely centriole disengagement is critical for the proper centriole duplication cycle. However, the mechanisms underlying centriole engagement during interphase are poorly understood. Here, we show that Cep57 and Cep57L1 cooperatively maintain centriole engagement during interphase. Co-depletion of Cep57 and Cep57L1 induces precocious centriole disengagement in the interphase without compromising cell cycle progression. The disengaged daughter centrioles convert into centrosomes during interphase in a Plk1-dependent manner. Furthermore, the centrioles reduplicate and the centriole number increases, which results in chromosome segregation errors. Overall, these findings demonstrate that the maintenance of centriole engagement by Cep57 and Cep57L1 during interphase is crucial for the tight control of centriole copy number and thus for proper chromosome segregation.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Alisa Atkins ◽  
Michelle J Xu ◽  
Maggie Li ◽  
Nathaniel P Rogers ◽  
Marina V Pryzhkova ◽  
...  

Mutations of SMC5/6 components cause developmental defects, including primary microcephaly. To model neurodevelopmental defects, we engineered a mouse wherein Smc5 is conditionally knocked out (cKO) in the developing neocortex. Smc5 cKO mice exhibited neurodevelopmental defects due to neural progenitor cell (NPC) apoptosis, which led to reduction in cortical layer neurons. Smc5 cKO NPCs formed DNA bridges during mitosis and underwent chromosome missegregation. SMC5/6 depletion triggers a CHEK2-p53 DNA damage response, as concomitant deletion of the Trp53 tumor suppressor or Chek2 DNA damage checkpoint kinase rescued Smc5 cKO neurodevelopmental defects. Further assessment using Smc5 cKO and auxin-inducible degron systems demonstrated that absence of SMC5/6 leads to DNA replication stress at late-replicating regions such as pericentromeric heterochromatin. In summary, SMC5/6 is important for completion of DNA replication prior to entering mitosis, which ensures accurate chromosome segregation. Thus, SMC5/6 functions are critical in highly proliferative stem cells during organism development.


2005 ◽  
Vol 168 (7) ◽  
pp. 999-1012 ◽  
Author(s):  
Jeff Bachant ◽  
Shannon R. Jessen ◽  
Sarah E. Kavanaugh ◽  
Candida S. Fielding

The budding yeast S phase checkpoint responds to hydroxyurea-induced nucleotide depletion by preventing replication fork collapse and the segregation of unreplicated chromosomes. Although the block to chromosome segregation has been thought to occur by inhibiting anaphase, we show checkpoint-defective rad53 mutants undergo cycles of spindle extension and collapse after hydroxyurea treatment that are distinct from anaphase cells. Furthermore, chromatid cohesion, whose dissolution triggers anaphase, is dispensable for S phase checkpoint arrest. Kinetochore–spindle attachments are required to prevent spindle extension during replication blocks, and chromosomes with two centromeres or an origin of replication juxtaposed to a centromere rescue the rad53 checkpoint defect. These observations suggest that checkpoint signaling is required to generate an inward force involved in maintaining preanaphase spindle integrity during DNA replication distress. We propose that by promoting replication fork integrity under these conditions Rad53 ensures centromere duplication. Replicating chromosomes can then bi-orient in a cohesin-independent manner to restrain untimely spindle extension.


2001 ◽  
Vol 12 (5) ◽  
pp. 1199-1213 ◽  
Author(s):  
Gregory G. Oakley ◽  
Lisa I. Loberg ◽  
Jiaqin Yao ◽  
Mary A. Risinger ◽  
Remy L. Yunker ◽  
...  

Exposure to DNA-damaging agents triggers signal transduction pathways that are thought to play a role in maintenance of genomic stability. A key protein in the cellular processes of nucleotide excision repair, DNA recombination, and DNA double-strand break repair is the single-stranded DNA binding protein, RPA. We showed previously that the p34 subunit of RPA becomes hyperphosphorylated as a delayed response (4–8 h) to UV radiation (10–30 J/m2). Here we show that UV-induced RPA-p34 hyperphosphorylation depends on expression of ATM, the product of the gene mutated in the human genetic disorder ataxia telangiectasia (A-T). UV-induced RPA-p34 hyperphosphorylation was not observed in A-T cells, but this response was restored by ATM expression. Furthermore, purified ATM kinase phosphorylates the p34 subunit of RPA complex in vitro at many of the same sites that are phosphorylated in vivo after UV radiation. Induction of this DNA damage response was also dependent on DNA replication; inhibition of DNA replication by aphidicolin prevented induction of RPA-p34 hyperphosphorylation by UV radiation. We postulate that this pathway is triggered by the accumulation of aberrant DNA replication intermediates, resulting from DNA replication fork blockage by UV photoproducts. Further, we suggest that RPA-p34 is hyperphosphorylated as a participant in the recombinational postreplication repair of these replication products. Successful resolution of these replication intermediates reduces the accumulation of chromosomal aberrations that would otherwise occur as a consequence of UV radiation.


2021 ◽  
Vol 220 (7) ◽  
Author(s):  
Franz Meitinger ◽  
Dong Kong ◽  
Midori Ohta ◽  
Arshad Desai ◽  
Karen Oegema ◽  
...  

Centrosomes are composed of a centriolar core surrounded by pericentriolar material that nucleates microtubules. The ubiquitin ligase TRIM37 localizes to centrosomes, but its centrosomal roles are not yet defined. We show that TRIM37 does not control centriole duplication, structure, or the ability of centrioles to form cilia but instead prevents assembly of an ectopic centrobin-scaffolded structured condensate that forms by budding off of centrosomes. In ∼25% of TRIM37-deficient cells, the condensate organizes an ectopic spindle pole, recruiting other centrosomal proteins and acquiring microtubule nucleation capacity during mitotic entry. Ectopic spindle pole–associated transient multipolarity and multipolar segregation in TRIM37-deficient cells are suppressed by removing centrobin, which interacts with and is ubiquitinated by TRIM37. Thus, TRIM37 ensures accurate chromosome segregation by preventing the formation of centrobin-scaffolded condensates that organize ectopic spindle poles. Mutations in TRIM37 cause the disorder mulibrey nanism, and patient-derived cells harbor centrobin condensate-organized ectopic poles, leading us to propose that chromosome missegregation is a pathological mechanism in this disorder.


Sign in / Sign up

Export Citation Format

Share Document