scholarly journals Circadian clock mechanism driving mammalian photoperiodism

2020 ◽  
Author(s):  
S.H. Wood ◽  
M.M. Hindle ◽  
Y. Mizoro ◽  
Y. Cheng ◽  
B.R.C. Saer ◽  
...  

AbstractThe annual photoperiod cycle provides the critical environmental cue synchronizing rhythms of life in seasonal habitats. In 1936, Bünning proposed a circadian-based coincidence timer for photoperiodic synchronization in plants. Formal studies support the universality of this so-called coincidence timer, but we lack understanding of the mechanisms involved. Here we show in mammals that long photoperiods induce the circadian transcription factor BMAL2, in the pars tuberalis of the pituitary, and triggers summer biology through the eyes absent / thyrotrophin (EYA3 / TSH) pathway. Conversely, long-duration melatonin signals on short photoperiods induce circadian repressors including DEC1, suppressing BMAL2 and the EYA3/TSH pathway, triggering winter biology. These actions are associated with progressive genome-wide changes in chromatin state, elaborating the effect of the circadian coincidence timer. Hence, circadian clock-pituitary epigenetic pathway interactions form the basis of the mammalian coincidence timer mechanism. Our results constitute a blueprint for circadian-based seasonal timekeeping in vertebrates.

2017 ◽  
Author(s):  
Anna M. Puszynska ◽  
Erin K. O’Shea

AbstractThe transcription factor RpaA is the master regulator of circadian transcription in cyanobacteria, driving genome-wide oscillations in mRNA abundance. Deletion ofrpaAhas no effect on viability in constant light conditions, but renders cells inviable in cycling conditions when light and dark periods alternate. We investigated the mechanisms underlying this viability defect, and demonstrate that therpaA-strain cannot maintain appropriate energy status at night, does not accumulate carbon reserves during the day, and is defective in transcription of genes crucial for utilization of carbohydrate stores at night. Reconstruction of carbon utilization pathways combined with provision of an external carbon source restores energy charge and viability of therpaA-strain in light/dark cycling conditions. Our observations highlight how a circadian program controls and temporally coordinates essential pathways in carbon metabolism to maximize fitness of cells facing periodic energy limitations.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Anna M Puszynska ◽  
Erin K O'Shea

The transcription factor RpaA is the master regulator of circadian transcription in cyanobacteria, driving genome-wide oscillations in mRNA abundance. Deletion of rpaA has no effect on viability in constant light conditions, but renders cells inviable in cycling conditions when light and dark periods alternate. We investigated the mechanisms underlying this viability defect, and demonstrate that the rpaA- strain cannot maintain appropriate energy status at night, does not accumulate carbon reserves during the day, and is defective in transcription of genes crucial for utilization of carbohydrate stores at night. Reconstruction of carbon utilization pathways combined with provision of an external carbon source restores energy charge and viability of the rpaA- strain in light/dark cycling conditions. Our observations highlight how a circadian output pathway controls and temporally coordinates essential pathways in carbon metabolism to maximize fitness of cells facing periodic energy limitations.


2020 ◽  
Author(s):  
Benjamin Heidebrecht ◽  
Jing Chen ◽  
John J. Tyson

ABSTRACTA wide variety of organisms possess endogenous circadian rhythms (~24 h period), which coordinate many physiological functions with the day-night cycle. These rhythms are mediated by a molecular mechanism based on transcription-translation feedback. A number of mathematical models have been developed to study features of the circadian clock in a variety of organisms. In this paper, we use bifurcation theory to explore properties of mathematical models based on Kim & Forger’s interpretation of the circadian clock in mammals. Their models are based on a simple negative feedback (SNF) loop between a regulatory protein (PER) and its transcriptional activator (BMAL). In their model, PER binds to BMAL to form a stoichiometric complex (PER:BMAL) that is inactive as a transcription factor. However, for oscillations to occur in the SNF model, the dissociation constant of the PER:BMAL complex, Kd, must be smaller than 10−3 nM, orders of magnitude below the limit set by the biophysics of protein binding. We have relaxed this constraint by introducing two modifications to Kim & Forger’s SNF model: (1) replacing the first-order rate law for degradation of PER in the nucleus by a Michaelis-Menten rate law, and (2) introducing a multistep reaction chain for posttranslational modifications of PER. These modifications significantly increase the robustness of oscillations, and increase the maximum allowable Kd to more reasonable values, 1—100 nM. In a third modification, we considered alternative rate laws for gene transcription to resolve an unrealistically large rate of PER transcription at very low levels of BMAL transcription factor. Additionally, we studied Kim & Forger’s extensions of the SNF model to include a second negative feedback loop (involving REV-ERB) and a supplementary positive feedback loop (involving ROR). We found that the supplementary positive feedback loop—but not the supplementary negative feedback loop— provides additional robustness to the clock model.AUTHOR SUMMARYThe circadian rhythm aligns bodily functions to the day/night cycle and is important for our health. The rhythm originates from an intracellular, molecular clock mechanism that mediates rhythmic gene expression. It is long understood that transcriptional negative feedback with sufficient time delay is key to generating circadian oscillations. However, some of the most widely cited mathematical models for the circadian clock suffer from problems of parameter “fragilities”. That is, sustained oscillations are possible only for physically unrealistic parameter values. A recent model by Kim and Forger nicely incorporates the inhibitory binding of PER, a key clock protein, to its transcription activator BMAL, but oscillations in their model require a binding affinity between PER and BMAL that is orders of magnitude lower than the physical limit of protein-protein binding. To rectify this problem, we make several physiologically credible modifications to the Kim-Forger model, which allow oscillations to occur with realistic binding affinity. The modified model is further extended to explore the potential roles of supplementary feedback loops in the mammalian clock mechanism. Ultimately, accurate models of the circadian clock will provide predictive tools for chronotherapy and chrono-pharmacology studies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sarah E. Pierce ◽  
Jeffrey M. Granja ◽  
William J. Greenleaf

AbstractChromatin accessibility profiling can identify putative regulatory regions genome wide; however, pooled single-cell methods for assessing the effects of regulatory perturbations on accessibility are limited. Here, we report a modified droplet-based single-cell ATAC-seq protocol for perturbing and evaluating dynamic single-cell epigenetic states. This method (Spear-ATAC) enables simultaneous read-out of chromatin accessibility profiles and integrated sgRNA spacer sequences from thousands of individual cells at once. Spear-ATAC profiling of 104,592 cells representing 414 sgRNA knock-down populations reveals the temporal dynamics of epigenetic responses to regulatory perturbations in cancer cells and the associations between transcription factor binding profiles.


Sign in / Sign up

Export Citation Format

Share Document