scholarly journals Developing a Fully-glycosylated Full-length SARS-CoV-2 Spike Protein Model in a Viral Membrane

Author(s):  
Hyeonuk Woo ◽  
Sang-Jun Park ◽  
Yeol Kyo Choi ◽  
Taeyong Park ◽  
Maham Tanveer ◽  
...  

ABSTRACTThis technical study describes all-atom modeling and simulation of a fully-glycosylated full-length SARS-CoV-2 spike (S) protein in a viral membrane. First, starting from PDB:6VSB and 6VXX, full-length S protein structures were modeled using template-based modeling, de-novo protein structure prediction, and loop modeling techniques in GALAXY modeling suite. Then, using the recently-determined most occupied glycoforms, 22 N-glycans and 1 O-glycan of each monomer were modeled using Glycan Reader & Modeler in CHARMM-GUI. These fully-glycosylated full-length S protein model structures were assessed and further refined against the low-resolution data in their respective experimental maps using ISOLDE. We then used CHARMM-GUI Membrane Builder to place the S proteins in a viral membrane and performed all-atom molecular dynamics simulations. All structures are available in CHARMM-GUI COVID-19 Archive (http://www.charmm-gui.org/docs/archive/covid19), so researchers can use these models to carry out innovative and novel modeling and simulation research for the prevention and treatment of COVID-19.

Author(s):  
Yeol Kyo Choi ◽  
Yiwei Cao ◽  
Martin Frank ◽  
Hyeonuk Woo ◽  
Sang-Jun Park ◽  
...  

ABSTRACTThe spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mediates host cell entry by binding to angiotensin-converting enzyme 2 (ACE2), and is considered the major target for drug and vaccine development. We previously built fully-glycosylated full-length SARS-CoV-2 S protein models in a viral membrane including both open and closed conformations of receptor binding domain (RBD) and different templates for the stalk region. In this work, multiple μs-long all-atom molecular dynamics simulations were performed to provide deeper insight into the structure and dynamics of S protein, and glycan functions. Our simulations reveal that the highly flexible stalk is composed of two independent joints and most probable S protein orientations are competent for ACE2 binding. We identify multiple glycans stabilizing the open and/or closed states of RBD, and demonstrate that the exposure of antibody epitopes can be captured by detailed antibody-glycan clash analysis instead of a commonly-used accessible surface area analysis that tends to overestimate the impact of glycan shielding and neglect possible detailed interactions between glycan and antibody. Overall, our observations offer structural and dynamic insight into SARS-CoV-2 S protein and potentialize for guiding the design of effective antiviral therapeutics.


2021 ◽  
Author(s):  
Michael Jendrusch ◽  
Jan O. Korbel ◽  
S. Kashif Sadiq

De novo protein design is a longstanding fundamental goal of synthetic biology, but has been hindered by the difficulty in reliable prediction of accurate high-resolution protein structures from sequence. Recent advances in the accuracy of protein structure prediction methods, such as AlphaFold (AF), have facilitated proteome scale structural predictions of monomeric proteins. Here we develop AlphaDesign, a computational framework for de novo protein design that embeds AF as an oracle within an optimisable design process. Our framework enables rapid prediction of completely novel protein monomers starting from random sequences. These are shown to adopt a diverse array of folds within the known protein space. A recent and unexpected utility of AF to predict the structure of protein complexes, further allows our framework to design higher-order complexes. Subsequently a range of predictions are made for monomers, homodimers, heterodimers as well as higher-order homo-oligomers -trimers to hexamers. Our analyses also show potential for designing proteins that bind to a pre-specified target protein. Structural integrity of predicted structures is validated and confirmed by standard ab initio folding and structural analysis methods as well as more extensively by performing rigorous all-atom molecular dynamics simulations and analysing the corresponding structural flexibility, intramonomer and interfacial amino-acid contacts. These analyses demonstrate widespread maintenance of structural integrity and suggests that our framework allows for fairly accurate protein design. Strikingly, our approach also reveals the capacity of AF to predict proteins that switch conformation upon complex formation, such as involving switches from α-helices to β-sheets during amyloid filament formation. Correspondingly, when integrated into our design framework, our approach reveals de novo design of a subset of proteins that switch conformation between monomeric and oligomeric state.


2020 ◽  
Author(s):  
Lim Heo ◽  
Collin Arbour ◽  
Michael Feig

Protein structures provide valuable information for understanding biological processes. Protein structures can be determined by experimental methods such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, or cryogenic electron microscopy. As an alternative, in silico methods can be used to predict protein structures. Those methods utilize protein structure databases for structure prediction via template-based modeling or for training machine-learning models to generate predictions. Structure prediction for proteins distant from proteins with known structures often results in lower accuracy with respect to the true physiological structures. Physics-based protein model refinement methods can be applied to improve model accuracy in the predicted models. Refinement methods rely on conformational sampling around the predicted structures, and if structures closer to the native states are sampled, improvements in the model quality become possible. Molecular dynamics simulations have been especially successful for improving model qualities but although consistent refinement can be achieved, the improvements in model qualities are still moderate. To extend the refinement performance of a simulation-based protocol, we explored new schemes that focus on an optimized use of biasing functions and the application of increased simulation temperatures. In addition, we tested the use of alternative initial models so that the simulations can explore conformational space more broadly. Based on the insight of this analysis we are proposing a new refinement protocol that significantly outperformed previous state-of-the-art molecular dynamics simulation-based protocols in the benchmark tests described here. <br>


2013 ◽  
Vol 48 ◽  
pp. 953-1000 ◽  
Author(s):  
F. Campeotto ◽  
A. Dal Palù ◽  
A. Dovier ◽  
F. Fioretto ◽  
E. Pontelli

This paper proposes the formalization and implementation of a novel class of constraints aimed at modeling problems related to placement of multi-body systems in the 3-dimensional space. Each multi-body is a system composed of body elements, connected by joint relationships and constrained by geometric properties. The emphasis of this investigation is the use of multi-body systems to model native conformations of protein structures---where each body represents an entity of the protein (e.g., an amino acid, a small peptide) and the geometric constraints are related to the spatial properties of the composing atoms. The paper explores the use of the proposed class of constraints to support a variety of different structural analysis of proteins, such as loop modeling and structure prediction. The declarative nature of a constraint-based encoding provides elaboration tolerance and the ability to make use of any additional knowledge in the analysis studies. The filtering capabilities of the proposed constraints also allow to control the number of representative solutions that are withdrawn from the conformational space of the protein, by means of criteria driven by uniform distribution sampling principles. In this scenario it is possible to select the desired degree of precision and/or number of solutions. The filtering component automatically excludes configurations that violate the spatial and geometric properties of the composing multi-body system. The paper illustrates the implementation of a constraint solver based on the multi-body perspective and its empirical evaluation on protein structure analysis problems.


2019 ◽  
Vol 35 (17) ◽  
pp. 3013-3019 ◽  
Author(s):  
José Ramón López-Blanco ◽  
Pablo Chacón

Abstract Motivation Knowledge-based statistical potentials constitute a simpler and easier alternative to physics-based potentials in many applications, including folding, docking and protein modeling. Here, to improve the effectiveness of the current approximations, we attempt to capture the six-dimensional nature of residue–residue interactions from known protein structures using a simple backbone-based representation. Results We have developed KORP, a knowledge-based pairwise potential for proteins that depends on the relative position and orientation between residues. Using a minimalist representation of only three backbone atoms per residue, KORP utilizes a six-dimensional joint probability distribution to outperform state-of-the-art statistical potentials for native structure recognition and best model selection in recent critical assessment of protein structure prediction and loop-modeling benchmarks. Compared with the existing methods, our side-chain independent potential has a lower complexity and better efficiency. The superior accuracy and robustness of KORP represent a promising advance for protein modeling and refinement applications that require a fast but highly discriminative energy function. Availability and implementation http://chaconlab.org/modeling/korp. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 124 (33) ◽  
pp. 7128-7137 ◽  
Author(s):  
Hyeonuk Woo ◽  
Sang-Jun Park ◽  
Yeol Kyo Choi ◽  
Taeyong Park ◽  
Maham Tanveer ◽  
...  

2021 ◽  
Author(s):  
Jue Wang ◽  
Sidney Lisanza ◽  
David Juergens ◽  
Doug Tischer ◽  
Ivan Anishchenko ◽  
...  

Current approaches to de novo design of proteins harboring a desired binding or catalytic motif require pre-specification of an overall fold or secondary structure composition, and hence considerable trial and error can be required to identify protein structures capable of scaffolding an arbitrary functional site. Here we describe two complementary approaches to the general functional site design problem that employ the RosettaFold and AlphaFold neural networks which map input sequences to predicted structures. In the first "constrained hallucination" approach, we carry out gradient descent in sequence space to optimize a loss function which simultaneously rewards recapitulation of the desired functional site and the ideality of the surrounding scaffold, supplemented with problem-specific interaction terms, to design candidate immunogens presenting epitopes recognized by neutralizing antibodies, receptor traps for escape-resistant viral inhibition, metalloproteins and enzymes, and target binding proteins with designed interfaces expanding around known binding motifs. In the second "missing information recovery" approach, we start from the desired functional site and jointly fill in the missing sequence and structure information needed to complete the protein in a single forward pass through an updated RoseTTAFold trained to recover sequence from structure in addition to structure from sequence. We show that the two approaches have considerable synergy, and AlphaFold2 structure prediction calculations suggest that the approaches can accurately generate proteins containing a very wide array of functional sites.


2015 ◽  
Vol 112 (44) ◽  
pp. 13567-13572 ◽  
Author(s):  
Ludovico Sutto ◽  
Simone Marsili ◽  
Alfonso Valencia ◽  
Francesco Luigi Gervasio

The analysis of evolutionary amino acid correlations has recently attracted a surge of renewed interest, also due to their successful use in de novo protein native structure prediction. However, many aspects of protein function, such as substrate binding and product release in enzymatic activity, can be fully understood only in terms of an equilibrium ensemble of alternative structures, rather than a single static structure. In this paper we combine coevolutionary data and molecular dynamics simulations to study protein conformational heterogeneity. To that end, we adapt the Boltzmann-learning algorithm to the analysis of homologous protein sequences and develop a coarse-grained protein model specifically tailored to convert the resulting contact predictions to a protein structural ensemble. By means of exhaustive sampling simulations, we analyze the set of conformations that are consistent with the observed residue correlations for a set of representative protein domains, showing that (i) the most representative structure is consistent with the experimental fold and (ii) the various regions of the sequence display different stability, related to multiple biologically relevant conformations and to the cooperativity of the coevolving pairs. Moreover, we show that the proposed protocol is able to reproduce the essential features of a protein folding mechanism as well as to account for regions involved in conformational transitions through the correct sampling of the involved conformers.


2020 ◽  
Author(s):  
Jiahua He ◽  
Sheng-You Huang

AbstractAdvances in microscopy instruments and image processing algorithms have led to an increasing number of cryo-EM maps. However, building accurate models for the EM maps at 3-5 Å resolution remains a challenging and time-consuming process. With the rapid growth of deposited EM maps, there is an increasing gap between the maps and reconstructed/modeled 3-dimensional (3D) structures. Therefore, automatic reconstruction of atomic-accuracy full-atom structures from EM maps is pressingly needed. Here, we present a semi-automatic de novo structure determination method using a deep learning-based framework, named as DeepMM, which builds atomic-accuracy all-atom models from cryo-EM maps at near-atomic resolution. In our method, the main-chain and Cα positions as well as their amino acid and secondary structure types are predicted in the EM map using Densely Connected Convolutional Networks. DeepMM was extensively validated on 40 simulated maps at 5 Å resolution and 30 experimental maps at 2.6-4.8 Å resolution as well as an EMDB-wide data set of 2931 experimental maps at 2.6-4.9 Å resolution, and compared with state-of-the-art algorithms including RosettaES, MAINMAST, and Phenix. Overall, our DeepMM algorithm obtained a significant improvement over existing methods in terms of both accuracy and coverage in building full-length protein structures on all test sets, demonstrating the efficacy and general applicability of DeepMM.Availabilityhttps://github.com/JiahuaHe/DeepMMSupplementary informationSupplementary data are available.


Sign in / Sign up

Export Citation Format

Share Document