scholarly journals TMEM106B and CPOX are genetic determinants of cerebrospinal fluid Alzheimer’s disease biomarker levels

2020 ◽  
Author(s):  
Shengjun Hong ◽  
Valerija Dobricic ◽  
Isabelle Bos ◽  
Stephanie J. B. Vos ◽  
Dmitry Prokopenko ◽  
...  

AbstractBackgroundNeurofilament light (NF-L), chitinase-3-like protein 1 (YKL-40), and neurogranin (Ng) are utilized as biomarkers for Alzheimer’s disease (AD), to monitor axonal damage, astroglial activation, and synaptic degeneration, respectively. Here we performed genome-wide association study (GWAS) analyses using all three biomarkers as outcome.MethodsDNA and cerebrospinal fluid (CSF) samples originated from the European Medical Information Framework AD Multimodal Biomarker Discovery (EMIF-AD MBD) study. Overlapping genotype/phenotype data were available for n=671 (NF-L), 677 (YKL-40), and 672 (Ng) individuals. GWAS analyses applied linear regression models adjusting for relevant covariates.FindingsWe identify novel genome-wide significant associations with markers in TMEM106B and CSF levels of NF-L. Additional novel signals were observed with DNA variants in CPOX and CSF levels of YKL-40. Lastly, we confirmed previous work suggesting that YKL-40 levels are regulated by cis protein quantitative trait loci (pQTL) in CHI3L1.InterpretationOur study provides important new insights into the genetic architecture underlying inter-individual variation in all three tested AD-related CSF biomarkers. In particular, our data shed light on the sequence of events regarding the initiation and progression of neuropathological processes relevant in AD.

2019 ◽  
Author(s):  
Shengjun Hong ◽  
Dmitry Prokopenko ◽  
Valerija Dobricic ◽  
Fabian Kilpert ◽  
Isabelle Bos ◽  
...  

AbstractAlzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the most common form of dementia in the elderly. Susceptibility to AD is considerably determined by genetic factors which hitherto were primarily identified using case-control designs. Elucidating the genetic architecture of additional AD-related phenotypic traits, ideally those linked to the underlying disease process, holds great promise in gaining deeper insights into the genetic basis of AD and in developing better clinical prediction models. To this end, we generated genome-wide single-nucleotide polymorphism (SNP) genotyping data in 931 participants of the European Medical Information Framework Alzheimer’s Disease Multimodal Biomarker Discovery (EMIF-AD MBD) sample to search for novel genetic determinants of AD biomarker variability. Specifically, we performed genome-wide association study (GWAS) analyses on 16 traits, including 14 measures of amyloid-beta (Aβ) and tau-protein species in the cerebrospinal fluid (CSF). In addition to confirming the well-established effects of apolipoprotein E (APOE) on diagnostic outcome and phenotypes related to Aβ42, we detected novel potential signals in the zinc finger homeobox 3 (ZFHX3) for CSF-Aβ38 and CSF-Aβ40 levels, and confirmed the previously described sex-specific association between SNPs in geminin coiled-coil domain containing (GMNC) and CSF-tau. Utilizing the results from independent case-control AD GWAS to construct polygenic risk scores (PRS) revealed that AD risk variants only explain a small fraction of CSF biomarker variability. In conclusion, our study represents a detailed first account of GWAS analyses on CSF-Aβ and -tau related traits in the EMIF-AD MBD dataset. In subsequent work, we will utilize the genomics data generated here in GWAS of other AD-relevant clinical outcomes ascertained in this unique dataset.


2019 ◽  
Author(s):  
Daniel Stamate ◽  
Min Kim ◽  
Petroula Proitsi ◽  
Sarah Westwood ◽  
Alison Baird ◽  
...  

AbstractINTRODUCTIONMachine learning (ML) may harbor the potential to capture the metabolic complexity in Alzheimer’s Disease (AD). Here we set out to test the performance of metabolites in blood to categorise AD when compared to CSF biomarkers.METHODSThis study analysed samples from 242 cognitively normal (CN) people and 115 with AD-type dementia utilizing plasma metabolites (n=883). Deep Learning (DL), Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were used to differentiate AD from CN. These models were internally validated using Nested Cross Validation (NCV).RESULTSOn the test data, DL produced the AUC of 0.85 (0.80-0.89), XGBoost produced 0.88 (0.86-0.89) and RF produced 0.85 (0.83-0.87). By comparison, CSF measures of amyloid, p-tau and t-tau (together with age and gender) produced with XGBoost the AUC values of 0.78, 0.83 and 0.87, respectively.DISCUSSIONThis study showed that plasma metabolites have the potential to match the AUC of well-established AD CSF biomarkers in a relatively small cohort. Further studies in independent cohorts are needed to validate whether this specific panel of blood metabolites can separate AD from controls, and how specific it is for AD as compared with other neurodegenerative disorders


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1610
Author(s):  
Jin Xu ◽  
Rebecca Green ◽  
Min Kim ◽  
Jodie Lord ◽  
Amera Ebshiana ◽  
...  

Background: physiological differences between males and females could contribute to the development of Alzheimer's Disease (AD). Here, we examined metabolic pathways that may lead to precision medicine initiatives. Methods: We explored whether sex modifies the association of 540 plasma metabolites with AD endophenotypes including diagnosis, cerebrospinal fluid (CSF) biomarkers, brain imaging, and cognition using regression analyses for 695 participants (377 females), followed by sex-specific pathway overrepresentation analyses, APOE ε4 stratification and assessment of metabolites’ discriminatory performance in AD. Results: In females with AD, vanillylmandelate (tyrosine pathway) was increased and tryptophan betaine (tryptophan pathway) was decreased. The inclusion of these two metabolites (area under curve (AUC) = 0.83, standard error (SE) = 0.029) to a baseline model (covariates + CSF biomarkers, AUC = 0.92, SE = 0.019) resulted in a significantly higher AUC of 0.96 (SE = 0.012). Kynurenate was decreased in males with AD (AUC = 0.679, SE = 0.046). Conclusions: metabolic sex-specific differences were reported, covering neurotransmission and inflammation pathways with AD endophenotypes. Two metabolites, in pathways related to dopamine and serotonin, were associated to females, paving the way to personalised treatment.


2020 ◽  
pp. 1-12
Author(s):  
Yusuke Seino ◽  
Takumi Nakamura ◽  
Tomoo Harada ◽  
Naoko Nakahata ◽  
Takeshi Kawarabayashi ◽  
...  

Background: High sensitivity liquid chromatography mass spectrometry (LC-MS/MS) was recently introduced to measure amyloid-β (Aβ) species, allowing for a simultaneous assay that is superior to ELISA, which requires more assay steps with multiple antibodies. Objective: We validated the Aβ1-38, Aβ1-40, Aβ1-42, and Aβ1-43 assay by LC-MS/MS and compared it with ELISA using cerebrospinal fluid (CSF) samples to investigate its feasibility for clinical application. Methods: CSF samples from 120 subjects [8 Alzheimer’s disease (AD) with dementia (ADD), 2 mild cognitive dementia due to Alzheimer’s disease (ADMCI), 14 cognitively unimpaired (CU), and 96 neurological disease subjects] were analyzed. Aβ species were separated using the Shimadzu Nexera X2 system and quantitated using a Qtrap 5500 LC-MS/MS system. Aβ1-40 and Aβ1-42 levels were validated using ELISA. Results: CSF levels in CU were 666±249 pmol/L in Aβ1-38, 2199±725 pmol/L in Aβ1-40, 153.7±79.7 pmol/L in Aβ1-42, and 9.78±4.58 pmol/L in Aβ1-43. The ratio of the amounts of Aβ1-38, Aβ1-40, Aβ1-42, and Aβ1-43 was approximately 68:225:16:1. Linear regression analyses showed correlations among the respective Aβ species. Both Aβ1-40 and Aβ1-42 values were strongly correlated with ELISA measurements. No significant differences were observed in Aβ1-38 or Aβ1-40 levels between AD and CU. Aβ1-42 and Aβ1-43 levels were significantly lower, whereas the Aβ1-38/1-42, Aβ1-38/1-43, and Aβ1-40/Aβ1-43 ratios were significantly higher in AD than in CU. The basic assay profiles of the respective Aβ species were adequate for clinical usage. Conclusion: A quantitative LC-MS/MS assay of CSF Aβ species is as reliable as specific ELISA for clinical evaluation of CSF biomarkers for AD.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
J. A. Monge-Argilés ◽  
R. Gasparini-Berenguer ◽  
M. Gutierrez-Agulló ◽  
C. Muñoz-Ruiz ◽  
J. Sánchez-Payá ◽  
...  

Objectives. To evaluate the association between apolipoprotein E (APOE) genotype and cerebrospinal fluid (CSF) levels of Alzheimer’s disease (AD) biomarkers and to study the influence of APOE genotype on the development of AD in a Spanish population.Material and Methods. The study comprised 29 amnestic mild cognitive impairment (MCI) patients and 27 control subjects. Using ELISA methodology, CSF biomarkers and tau/Aβratios were obtained. ANOVA and adjusted odds ratios were calculated.Results. We observed the effect of APOE genotype and age on CSF AD variables. The progression to AD was more clearly influenced by CSF AD variables than by age or APOE status.Conclusions. APOE status influences CSF AD variables. However, the presence of APOEε4 does not appear to be a deterministic factor for the development of AD, because CSF variables have a greater influence on progression to the disease. These results confirm previous observations and, to our knowledge, are the first published in a Spanish population.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shengjun Hong ◽  
◽  
Dmitry Prokopenko ◽  
Valerija Dobricic ◽  
Fabian Kilpert ◽  
...  

AbstractAlzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the most common form of dementia in the elderly. Susceptibility to AD is considerably determined by genetic factors which hitherto were primarily identified using case–control designs. Elucidating the genetic architecture of additional AD-related phenotypic traits, ideally those linked to the underlying disease process, holds great promise in gaining deeper insights into the genetic basis of AD and in developing better clinical prediction models. To this end, we generated genome-wide single-nucleotide polymorphism (SNP) genotyping data in 931 participants of the European Medical Information Framework Alzheimer’s Disease Multimodal Biomarker Discovery (EMIF-AD MBD) sample to search for novel genetic determinants of AD biomarker variability. Specifically, we performed genome-wide association study (GWAS) analyses on 16 traits, including 14 measures derived from quantifications of five separate amyloid-beta (Aβ) and tau-protein species in the cerebrospinal fluid (CSF). In addition to confirming the well-established effects of apolipoprotein E (APOE) on diagnostic outcome and phenotypes related to Aβ42, we detected novel potential signals in the zinc finger homeobox 3 (ZFHX3) for CSF-Aβ38 and CSF-Aβ40 levels, and confirmed the previously described sex-specific association between SNPs in geminin coiled-coil domain containing (GMNC) and CSF-tau. Utilizing the results from independent case–control AD GWAS to construct polygenic risk scores (PRS) revealed that AD risk variants only explain a small fraction of CSF biomarker variability. In conclusion, our study represents a detailed first account of GWAS analyses on CSF-Aβ and -tau-related traits in the EMIF-AD MBD dataset. In subsequent work, we will utilize the genomics data generated here in GWAS of other AD-relevant clinical outcomes ascertained in this unique dataset.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Joseph S. Reddy ◽  
Mariet Allen ◽  
Charlotte C. G. Ho ◽  
Stephanie R. Oatman ◽  
Özkan İş ◽  
...  

AbstractCerebral amyloid angiopathy (CAA) contributes to accelerated cognitive decline in Alzheimer’s disease (AD) dementia and is a common finding at autopsy. The APOEε4 allele and male sex have previously been reported to associate with increased CAA in AD. To inform biomarker and therapeutic target discovery, we aimed to identify additional genetic risk factors and biological pathways involved in this vascular component of AD etiology. We present a genome-wide association study of CAA pathology in AD cases and report sex- and APOE-stratified assessment of this phenotype. Genome-wide genotypes were collected from 853 neuropathology-confirmed AD cases scored for CAA across five brain regions, and imputed to the Haplotype Reference Consortium panel. Key variables and genome-wide genotypes were tested for association with CAA in all individuals and in sex and APOEε4 stratified subsets. Pathway enrichment was run for each of the genetic analyses. Implicated loci were further investigated for functional consequences using brain transcriptome data from 1,186 samples representing seven brain regions profiled as part of the AMP-AD consortium. We confirmed association of male sex, AD neuropathology and APOEε4 with increased CAA, and identified a novel locus, LINC-PINT, associated with lower CAA amongst APOEε4-negative individuals (rs10234094-C, beta = −3.70 [95% CI −0.49—−0.24]; p = 1.63E-08). Transcriptome profiling revealed higher LINC-PINT expression levels in AD cases, and association of rs10234094-C with altered LINC-PINT splicing. Pathway analysis indicates variation in genes involved in neuronal health and function are linked to CAA in AD patients. Further studies in additional and diverse cohorts are needed to assess broader translation of our findings.


Sign in / Sign up

Export Citation Format

Share Document