scholarly journals scNym: Semi-supervised adversarial neural networks for single cell classification

Author(s):  
Jacob C. Kimmel ◽  
David R. Kelley

AbstractAnnotating cell identities is a common bottleneck in the analysis of single cell genomics experiments. Here, we present scNym, a semi-supervised, adversarial neural network that learns to transfer cell identity annotations from one experiment to another. scNym takes advantage of information in both labeled datasets and new, unlabeled datasets to learn rich representations of cell identity that enable effective annotation transfer. We show that scNym effectively transfers annotations across experiments despite biological and technical differences, achieving performance superior to existing methods. We also show that scNym models can synthesize information from multiple training and target datasets to improve performance. In addition to high performance, we show that scNym models are well-calibrated and interpretable with saliency methods.

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1614
Author(s):  
Jonghun Jeong ◽  
Jong Sung Park ◽  
Hoeseok Yang

Recently, the necessity to run high-performance neural networks (NN) is increasing even in resource-constrained embedded systems such as wearable devices. However, due to the high computational and memory requirements of the NN applications, it is typically infeasible to execute them on a single device. Instead, it has been proposed to run a single NN application cooperatively on top of multiple devices, a so-called distributed neural network. In the distributed neural network, workloads of a single big NN application are distributed over multiple tiny devices. While the computation overhead could effectively be alleviated by this approach, the existing distributed NN techniques, such as MoDNN, still suffer from large traffics between the devices and vulnerability to communication failures. In order to get rid of such big communication overheads, a knowledge distillation based distributed NN, called Network of Neural Networks (NoNN), was proposed, which partitions the filters in the final convolutional layer of the original NN into multiple independent subsets and derives smaller NNs out of each subset. However, NoNN also has limitations in that the partitioning result may be unbalanced and it considerably compromises the correlation between filters in the original NN, which may result in an unacceptable accuracy degradation in case of communication failure. In this paper, in order to overcome these issues, we propose to enhance the partitioning strategy of NoNN in two aspects. First, we enhance the redundancy of the filters that are used to derive multiple smaller NNs by means of averaging to increase the immunity of the distributed NN to communication failure. Second, we propose a novel partitioning technique, modified from Eigenvector-based partitioning, to preserve the correlation between filters as much as possible while keeping the consistent number of filters distributed to each device. Throughout extensive experiments with the CIFAR-100 (Canadian Institute For Advanced Research-100) dataset, it has been observed that the proposed approach maintains high inference accuracy (over 70%, 1.53× improvement over the state-of-the-art approach), on average, even when a half of eight devices in a distributed NN fail to deliver their partial inference results.


2020 ◽  
Vol 11 (28) ◽  
pp. 7335-7348 ◽  
Author(s):  
Timothy E. H. Allen ◽  
Andrew J. Wedlake ◽  
Elena Gelžinytė ◽  
Charles Gong ◽  
Jonathan M. Goodman ◽  
...  

Deep learning neural networks, constructed for the prediction of chemical binding at 79 pharmacologically important human biological targets, show extremely high performance on test data (accuracy 92.2 ± 4.2%, MCC 0.814 ± 0.093, ROC-AUC 0.96 ± 0.04).


2018 ◽  
Vol 246 ◽  
pp. 03044 ◽  
Author(s):  
Guozhao Zeng ◽  
Xiao Hu ◽  
Yueyue Chen

Convolutional Neural Networks (CNNs) have become the most advanced algorithms for deep learning. They are widely used in image processing, object detection and automatic translation. As the demand for CNNs continues to increase, the platforms on which they are deployed continue to expand. As an excellent low-power, high-performance, embedded solution, Digital Signal Processor (DSP) is used frequently in many key areas. This paper attempts to deploy the CNN to Texas Instruments (TI)’s TMS320C6678 multi-core DSP and optimize the main operations (convolution) to accommodate the DSP structure. The efficiency of the improved convolution operation has increased by tens of times.


2015 ◽  
Vol 781 ◽  
pp. 624-627 ◽  
Author(s):  
Rati Wongsathan ◽  
Pasit Pothong

Neural Networks (NNs) has emerged as an importance tool for classification in the field of decision making. The main objective of this work is to design the structure and select the optimized parameter in the neural networks to implement the heart disease classifier. Three types of neural networks, i.e. Multi-layered Perceptron Neural Network (MLP-NN), Radial Basis Function Neural Networks (RBF-NN), and Generalized Regression Neural Network (GR-NN) have been used to test the performance of heart disease classification. The classification accuracy obtained by RBFNN gave a very high performance than MLP-NN and GR-NN respectively. The performance of accuracy is very promising compared with the previously reported another type of neural networks.


Information ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 329
Author(s):  
Jesús Calvillo ◽  
Harm Brouwer ◽  
Matthew W. Crocker

Decades of studies trying to define the extent to which artificial neural networks can exhibit systematicity suggest that systematicity can be achieved by connectionist models but not by default. Here we present a novel connectionist model of sentence production that employs rich situation model representations originally proposed for modeling systematicity in comprehension. The high performance of our model demonstrates that such representations are also well suited to model language production. Furthermore, the model can produce multiple novel sentences for previously unseen situations, including in a different voice (actives vs. passive) and with words in new syntactic roles, thus demonstrating semantic and syntactic generalization and arguably systematicity. Our results provide yet further evidence that such connectionist approaches can achieve systematicity, in production as well as comprehension. We propose our positive results to be a consequence of the regularities of the microworld from which the semantic representations are derived, which provides a sufficient structure from which the neural network can interpret novel inputs.


Author(s):  
S O Stepanenko ◽  
P Y Yakimov

Object classification with use of neural networks is extremely current today. YOLO is one of the most often used frameworks for object classification. It produces high accuracy but the processing speed is not high enough especially in conditions of limited performance of a computer. This article researches use of a framework called NVIDIA TensorRT to optimize YOLO with the aim of increasing the image processing speed. Saving efficiency and quality of the neural network work TensorRT allows us to increase the processing speed using an optimization of the architecture and an optimization of calculations on a GPU.


Geophysics ◽  
2021 ◽  
pp. 1-77
Author(s):  
Hanchen Wang ◽  
Tariq Alkhalifah

The ample size of time-lapse data often requires significant event detection and source location efforts, especially in areas like shale gas exploration regions where a large number of micro-seismic events are often recorded. In many cases, the real-time monitoring and locating of these events are essential to production decisions. Conventional methods face considerable drawbacks. For example, traveltime-based methods require traveltime picking of often noisy data, while migration and waveform inversion methods require expensive wavefield solutions and event detection. Both tasks require some human intervention, and this becomes a big problem when too many sources need to be located, which is common in micro-seismic monitoring. Machine learning has recently been used to identify micro-seismic events or locate their sources once they are identified and picked. We propose to use a novel artificial neural network framework to directly map seismic data, without any event picking or detection, to their potential source locations. We train two convolutional neural networks on labeled synthetic acoustic data containing simulated micro-seismic events to fulfill such requirements. One convolutional neural network, which has a global average pooling layer to reduce the computational cost while maintaining high-performance levels, aims to classify the number of events in the data. The other network predicts the source locations and other source features such as the source peak frequencies and amplitudes. To reduce the size of the input data to the network, we correlate the recorded traces with a central reference trace to allow the network to focus on the curvature of the input data near the zero-lag region. We train the networks to handle single, multi, and no event segments extracted from the data. Tests on a simple vertical varying model and a more realistic Otway field model demonstrate the approach's versatility and potential.


2021 ◽  
Vol 21 (3) ◽  
pp. 1833-1844
Author(s):  
Kyojin Kim ◽  
Kamran Eshraghian ◽  
Hyunsoo Kang ◽  
Kyoungrok Cho

Nano memristor crossbar arrays, which can represent analog signals with smaller silicon areas, are popularly used to describe the node weights of the neural networks. The crossbar arrays provide high computational efficiency, as they can perform additions and multiplications at the same time at a cross-point. In this study, we propose a new approach for the memristor crossbar array architecture consisting of multi-weight nano memristors on each cross-point. As the proposed architecture can represent multiple integer-valued weights, it can enhance the precision of the weight coefficients in comparison with the existing memristor-based neural networks. This study presents a Radix-11 nano memristor crossbar array with weighted memristors; it validates the operations of the circuits, which use the arrays through circuit-level simulation. With the proposed Radix-11 approach, it is possible to represent eleven integer-valued weights. In addition, this study presents a neural network designed using the proposed Radix-11 weights, as an example of high-performance AI applications. The neural network implements a speech-keyword detection algorithm, and it was designed on a TensorFlow platform. The implemented keyword detection algorithm can recognize 35 Korean words with an inferencing accuracy of 95.45%, reducing the inferencing accuracy only by 2% when compared to the 97.53% accuracy of the real-valued weight case.


Sign in / Sign up

Export Citation Format

Share Document