scholarly journals Quantification of the relative arm-use in patients with hemiparesis using inertial measurement units

Author(s):  
Ann David ◽  
StephenSukumaran ReethaJanetSureka ◽  
Sankaralingam Gayathri ◽  
Salai Jeyseelan Annamalai ◽  
Selvaraj Samuelkamleshkumar ◽  
...  

Background: The most popular method for measuring upper limb activity is based on accelerometry. However, this method is prone to overestimation and is agnostic to the functional utility of a movement. In this study, we used an inertial measurement unit(IMU)-based gross movement score to quantify arm-use in hemiparetic patients at home. Objectives: (i) Validate the gross movement score detected by wrist-worn IMUs against functional movements identified by human assessors. (ii) Test the feasibility of using wrist-worn IMUs to measure arm-use in patients' natural settings. Methods: To validate the gross movement score two independent assessors analyzed and annotated the video recordings of 5 hemiparetic patients and 10 healthy controls performing a set of activities while wearing IMUs. The second study tracked arm-use of 5 hemiparetic patients and 5 healthy controls using two wrist-worn IMUs for 7 days and 3 days, respectively. The IMU data obtained from this study was used to develop quantitative measures (total and relative arm-use (RAU)) and a visualization method for arm-use. Results: The gross movement score detects functional movement with 50-60% accuracy in hemiparetic patients, and is robust to non-functional movements. Healthy controls showed a slight bias towards the dominant arm (RAU: 40.52)°. Patients' RAU varied between 15-47° depending upon their impairment level and pre-stroke hand dominance. Conclusions: The gross movement score performs moderately well in detecting functional movements while rejecting non-functional movements. The patients' total arm-use is less than healthy controls, and their relative arm-use is skewed towards the less-impaired arm.

2021 ◽  
Vol 10 (9) ◽  
pp. 1804
Author(s):  
Jorge Posada-Ordax ◽  
Julia Cosin-Matamoros ◽  
Marta Elena Losa-Iglesias ◽  
Ricardo Becerro-de-Bengoa-Vallejo ◽  
Laura Esteban-Gonzalo ◽  
...  

In recent years, interest in finding alternatives for the evaluation of mobility has increased. Inertial measurement units (IMUs) stand out for their portability, size, and low price. The objective of this study was to examine the accuracy and repeatability of a commercially available IMU under controlled conditions in healthy subjects. A total of 36 subjects, including 17 males and 19 females were analyzed with a Wiva Science IMU in a corridor test while walking for 10 m and in a threadmill at 1.6 km/h, 2.4 km/h, 3.2 km/h, 4 km/h, and 4.8 km/h for one minute. We found no difference when we compared the variables at 4 km/h and 4.8 km/h. However, we found greater differences and errors at 1.6 km/h, 2.4 km/h and 3.2 km/h, and the latter one (1.6 km/h) generated more error. The main conclusion is that the Wiva Science IMU is reliable at high speeds but loses reliability at low speeds.


2020 ◽  
Vol 11 (1) ◽  
pp. 96
Author(s):  
Wen-Lan Wu ◽  
Meng-Hua Lee ◽  
Hsiu-Tao Hsu ◽  
Wen-Hsien Ho ◽  
Jing-Min Liang

Background: In this study, an automatic scoring system for the functional movement screen (FMS) was developed. Methods: Thirty healthy adults fitted with full-body inertial measurement unit sensors completed six FMS exercises. The system recorded kinematics data, and a professional athletic trainer graded each participant. To reduce the number of input variables for the predictive model, ordinal logistic regression was used for subset feature selection. The ensemble learning algorithm AdaBoost.M1 was used to construct classifiers. Accuracy and F score were used for classification model evaluation. The consistency between automatic and manual scoring was assessed using a weighted kappa statistic. Results: When all the features were used, the predict model presented moderate to high accuracy, with kappa values between fair to very good agreement. After feature selection, model accuracy decreased about 10%, with kappa values between poor to moderate agreement. Conclusions: The results indicate that higher prediction accuracy was achieved using the full feature set compared with using the reduced feature set.


2013 ◽  
Vol 662 ◽  
pp. 717-720 ◽  
Author(s):  
Zhen Yu Zheng ◽  
Yan Bin Gao ◽  
Kun Peng He

As an inertial sensors assembly, the FOG inertial measurement unit (FIMU) must be calibrated before being used. The paper presents a one-time systematic IMU calibration method only using two-axis low precision turntable. First, the detail error model of inertial sensors using defined body frame is established. Then, only velocity taken as observation, system 33 state equation is established including the lever arm effects and nonlinear terms of scale factor error. The turntable experiments verify that the method can identify all the error coefficients of FIMU on low-precision two-axis turntable, after calibration the accuracy of navigation is improved.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2983
Author(s):  
Marie Sapone ◽  
Pauline Martin ◽  
Khalil Ben Mansour ◽  
Henry Château ◽  
Frédéric Marin

The development of on-board sensors, such as inertial measurement units (IMU), has made it possible to develop new methods for analyzing horse locomotion to detect lameness. The detection of spatiotemporal events is one of the keystones in the analysis of horse locomotion. This study assesses the performance of four methods for detecting Foot on and Foot off events. They were developed from an IMU positioned on the canon bone of eight horses during trotting recording on a treadmill and compared to a standard gold method based on motion capture. These methods are based on accelerometer and gyroscope data and use either thresholding or wavelets to detect stride events. The two methods developed from gyroscopic data showed more precision than those developed from accelerometric data with a bias less than 0.6% of stride duration for Foot on and 0.1% of stride duration for Foot off. The gyroscope is less impacted by the different patterns of strides, specific to each horse. To conclude, methods using the gyroscope present the potential of further developments to investigate the effects of different gait paces and ground types in the analysis of horse locomotion.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2846 ◽  
Author(s):  
Chun-mei Dong ◽  
Shun-qing Ren ◽  
Xi-jun Chen ◽  
Zhen-huan Wang

Inertial Measurement Unit (IMU) calibration accuracy is easily affected by turntable errors, so the primary aim of this study is to reduce the dependence on the turntable’s precision during the calibration process. Firstly, the indicated-output of the IMU considering turntable errors is constructed and with the introduction of turntable errors, the functional relationship between turntable errors and the indicated-output was derived. Then, based on a D-suboptimal design, a calibration method for simultaneously identifying the IMU error model parameters and the turntable errors was proposed. Simulation results showed that some turntable errors could thus be effectively calibrated and automatically compensated. Finally, the theoretical validity was verified through experiments. Compared with the traditional method, the method proposed in this paper can significantly reduce the influence of the turntable errors on the IMU calibration accuracy.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4486
Author(s):  
Jeremy Cole ◽  
Alper Bozkurt ◽  
Edgar Lobaton

Disaster robotics is a growing field that is concerned with the design and development of robots for disaster response and disaster recovery. These robots assist first responders by performing tasks that are impractical or impossible for humans. Unfortunately, current disaster robots usually lack the maneuverability to efficiently traverse these areas, which often necessitate extreme navigational capabilities, such as centimeter-scale clearance. Recent work has shown that it is possible to control the locomotion of insects such as the Madagascar hissing cockroach (Gromphadorhina portentosa) through bioelectrical stimulation of their neuro-mechanical system. This provides access to a novel agent that can traverse areas that are inaccessible to traditional robots. In this paper, we present a data-driven inertial navigation system that is capable of localizing cockroaches in areas where GPS is not available. We pose the navigation problem as a two-point boundary-value problem where the goal is to reconstruct a cockroach’s trajectory between the starting and ending states, which are assumed to be known. We validated our technique using nine trials that were conducted in a circular arena using a biobotic agent equipped with a thorax-mounted, low-cost inertial measurement unit. Results show that we can achieve centimeter-level accuracy. This is accomplished by estimating the cockroach’s velocity—using regression models that have been trained to estimate the speed and heading from the inertial signals themselves—and solving an optimization problem so that the boundary-value constraints are satisfied.


2021 ◽  
Vol 8 ◽  
pp. 205566832110196
Author(s):  
Ann David ◽  
StephenSukumaran ReethaJanetSureka ◽  
Sankaralingam Gayathri ◽  
Salai Jeyseelan Annamalai ◽  
Selvaraj Samuelkamleshkumar ◽  
...  

Introduction Accelerometry-based activity counting for measuring arm use is prone to overestimation due to non-functional movements. In this paper, we used an inertial measurement unit (IMU)-based gross movement (GM) score to quantify arm use. Methods In this two-part study, we first characterized the GM by comparing it to annotated video recordings of 5 hemiparetic patients and 10 control subjects performing a set of activities. In the second part, we tracked the arm use of 5 patients and 5 controls using two wrist-worn IMUs for 7 and 3 days, respectively. The IMU data was used to develop quantitative measures (total and relative arm use) and a visualization method for arm use. Results From the characterization study, we found that GM detects functional activities with 50–60% accuracy and eliminates non-functional activities with >90% accuracy. Continuous monitoring of arm use showed that the arm use was biased towards the dominant limb and less paretic limb for controls and patients, respectively. Conclusions The gross movement score has good specificity but low sensitivity in identifying functional activity. The at-home study showed that it is feasible to use two IMU-watches to monitor relative arm use and provided design considerations for improving the assessment method. Clinical trial registry number: CTRI/2018/09/015648


2011 ◽  
Vol 255-260 ◽  
pp. 2077-2081 ◽  
Author(s):  
Jaw Kuen Shiau ◽  
Der Ming Ma ◽  
Chen Xuan Huang ◽  
Ming Yu Chang

This study investigates the effects of temperature on micro-electro mechanical system (MEMS) gyroscope null drift and methods and efficiency of temperature compensation. First, this study uses in-house-designed inertial measurement units (IMUs) to perform temperature effect testing. The inertial measurement unit is placed into the temperature control chamber. Then, the temperature is gradually increased from 25 °C to 80 °C at approximately 0.8 degrees per minute. After that, the temperature is decreased to -40 °C and then returning to 25 °C. During these temperature variations, the temperature and static gyroscope output observes the gyroscope null drift phenomenon. The results clearly demonstrate the effects of temperature on gyroscope null voltage. A temperature calibration mechanism is established by using a neural network model. With the temperature calibration, the attitude computation problem due to gyro drifts can be improved significantly.


Author(s):  
Zhongkai Qin ◽  
Luc Baron ◽  
Lionel Birglen

This paper presents a robust design scheme for an inertial measurement unit (IMU) composed only of accelerometers. From acceleration data measured by a redundant set of accelerometers, the IMU proposed in this paper can estimate the linear acceleration, angular velocity, and angular acceleration of the rigid-body to which it is attached. The robustness of our method to the uncertainty of the locations of the sensors and the measurement noise is obtained through redundancy and optimal configuration of the onboard sensors. In addition, the fail-diagnostics and fail-safe issues are also addressed for reliable operation.


Sign in / Sign up

Export Citation Format

Share Document