scholarly journals Pandora: 4-D white matter bundle population-based atlases derived from diffusion MRI fiber tractography

2020 ◽  
Author(s):  
Colin B Hansen ◽  
Qi Yang ◽  
Ilwoo Lyu ◽  
Francois Rheault ◽  
Cailey Kerley ◽  
...  

AbstractBrain atlases have proven to be valuable neuroscience tools for localizing regions of interest and performing statistical inferences on populations. Although many human brain atlases exist, most do not contain information about white matter structures, often neglecting them completely or labelling all white matter as a single homogenous substrate. While few white matter atlases do exist based on diffusion MRI fiber tractography, they are often limited to descriptions of white matter as spatially separate “regions” rather than as white matter “bundles” or fascicles, which are well-known to overlap throughout the brain. Additional limitations include small sample sizes, few white matter pathways, and the use of outdated diffusion models and techniques. Here, we present a new population-based collection of white matter atlases represented in both volumetric and surface coordinates in a standard space. These atlases are based on 2443 subjects, and include 216 white matter bundles derived from 6 different state-of-the-art tractography techniques. This atlas is freely available and will be a useful resource for parcellation and segmentation.

2020 ◽  
Author(s):  
Colin B Hansen ◽  
Qi Yang ◽  
Ilwoo Lyu ◽  
Francois Rheault ◽  
Cailey Kerley ◽  
...  

2018 ◽  
Author(s):  
Kurt G Schilling ◽  
Vishwesh Nath ◽  
Colin Hansen ◽  
Prasanna Parvathaneni ◽  
Justin Blaber ◽  
...  

AbstractDiffusion MRI fiber tractography is widely used to probe the structural connectivity of thebrain, with a range of applications in both clinical and basic neuroscience. Despite widespread use, tractography has well-known pitfalls that limits the anatomical accuracy of this technique. Numerous modern methods have been developed to address these shortcomings through advances in acquisition, modeling, and computation. To test whether these advances improve tractography accuracy, we organized the ISBI 2018 3D Validation of Tractography with Experimental MRI (3D-VoTEM) challenge. We made available three unique independent tractography validation datasets – a physical phantom and two ex vivo brain specimens - resulting in 176 distinct submissions from 9 research groups. By comparing results over a wide range of fiber complexities and algorithmic strategies, this challenge provides a more comprehensive assessment of tractography’s inherent limitations than has been reported previously. The central results were consistent across all sub-challenges in that, despite advances in tractography methods, the anatomical accuracy of tractography has not dramatically improved in recent years. Taken together, our results independently confirm findings from decades of tractography validation studies, demonstrate inherent limitations in reconstructing white matter pathways using diffusion MRI data alone, and highlight the need for alternative or combinatorial strategies to accurately map the fiber pathways of the brain.


2021 ◽  
Vol 11 (6) ◽  
pp. 497
Author(s):  
Yoonsuk Jung ◽  
Eui Im ◽  
Jinhee Lee ◽  
Hyeah Lee ◽  
Changmo Moon

Previous studies have evaluated the effects of antithrombotic agents on the performance of fecal immunochemical tests (FITs) for the detection of colorectal cancer (CRC), but the results were inconsistent and based on small sample sizes. We studied this topic using a large-scale population-based database. Using the Korean National Cancer Screening Program Database, we compared the performance of FITs for CRC detection between users and non-users of antiplatelet agents and warfarin. Non-users were matched according to age and sex. Among 5,426,469 eligible participants, 768,733 used antiplatelet agents (mono/dual/triple therapy, n = 701,683/63,211/3839), and 19,569 used warfarin, while 4,638,167 were non-users. Among antiplatelet agents, aspirin, clopidogrel, and cilostazol ranked first, second, and third, respectively, in terms of prescription rates. Users of antiplatelet agents (3.62% vs. 4.45%; relative risk (RR): 0.83; 95% confidence interval (CI): 0.78–0.88), aspirin (3.66% vs. 4.13%; RR: 0.90; 95% CI: 0.83–0.97), and clopidogrel (3.48% vs. 4.88%; RR: 0.72; 95% CI: 0.61–0.86) had lower positive predictive values (PPVs) for CRC detection than non-users. However, there were no significant differences in PPV between cilostazol vs. non-users and warfarin users vs. non-users. For PPV, the RR (users vs. non-users) for antiplatelet monotherapy was 0.86, while the RRs for dual and triple antiplatelet therapies (excluding cilostazol) were 0.67 and 0.22, respectively. For all antithrombotic agents, the sensitivity for CRC detection was not different between users and non-users. Use of antiplatelet agents, except cilostazol, may increase the false positives without improving the sensitivity of FITs for CRC detection.


2021 ◽  
Author(s):  
Kurt Schilling ◽  
Chantal M.W. Tax ◽  
Francois Rheault ◽  
Colin B Hansen ◽  
Qi Yang ◽  
...  

When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate four potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across acquisition protocol, and (4) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by scanner-effects, and finally b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods.


Author(s):  
Sandhya Gudise ◽  
Giri Babu Kande ◽  
T. Satya Savithri

This paper proposes an advanced and precise technique for the segmentation of Magnetic Resonance Image (MRI) of the brain. Brain MRI segmentation is to be familiar with the anatomical structure, to recognize the deformities, and to distinguish different tissues which help in treatment planning and diagnosis. Nature’s inspired population-based evolutionary algorithms are extremely popular for a wide range of applications due to their best solutions. Teaching Learning Based Optimization (TLBO) is an advanced population-based evolutionary algorithm designed based on Teaching and Learning process of a classroom. TLBO uses common controlling parameters and it won’t require algorithm-specific parameters. TLBO is more appropriate to optimize the real variables which are fuzzy valued, computationally efficient, and does not require parameter tuning. In this work, the pixels of the brain image are automatically grouped into three distinct homogeneous tissues such as White Matter (WM), Gray Matter (GM), and Cerebro Spinal Fluid (CSF) using the TLBO algorithm. The methodology includes skull stripping and filtering in the pre-processing stage. The outcomes for 10 MR brain images acquired by utilizing the proposed strategy proved that the three brain tissues are segmented accurately. The segmentation outputs are compared with the ground truth images and high values are obtained for the measure’s sensitivity, specificity, and segmentation accuracy. Four different approaches, namely Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Bacterial Foraging Algorithm (BFA), and Electromagnetic Optimization (EMO) are likewise implemented to compare with the results of the proposed methodology. From the results, it can be proved that the proposed method performed effectively than the other.


2018 ◽  
Vol 2 (1) ◽  
pp. 86-105 ◽  
Author(s):  
Michael A. Powell ◽  
Javier O. Garcia ◽  
Fang-Cheng Yeh ◽  
Jean M. Vettel ◽  
Timothy Verstynen

The unique architecture of the human connectome is defined initially by genetics and subsequently sculpted over time with experience. Thus, similarities in predisposition and experience that lead to similarities in social, biological, and cognitive attributes should also be reflected in the local architecture of white matter fascicles. Here we employ a method known as local connectome fingerprinting that uses diffusion MRI to measure the fiber-wise characteristics of macroscopic white matter pathways throughout the brain. This fingerprinting approach was applied to a large sample ( N = 841) of subjects from the Human Connectome Project, revealing a reliable degree of between-subject correlation in the local connectome fingerprints, with a relatively complex, low-dimensional substructure. Using a cross-validated, high-dimensional regression analysis approach, we derived local connectome phenotype (LCP) maps that could reliably predict a subset of subject attributes measured, including demographic, health, and cognitive measures. These LCP maps were highly specific to the attribute being predicted but also sensitive to correlations between attributes. Collectively, these results indicate that the local architecture of white matter fascicles reflects a meaningful portion of the variability shared between subjects along several dimensions.


2021 ◽  
Author(s):  
Kurt Schilling ◽  
Chantal M.W. Tax ◽  
Francois M.W. Rheault ◽  
Bennett A Landman ◽  
Adam W Anderson ◽  
...  

Characterizing and understanding the limitations of diffusion MRI fiber tractography is a prerequisite for methodological advances and innovations which will allow these techniques to accurately map the connections of the human brain. The so-called "crossing fiber problem" has received tremendous attention and has continuously triggered the community to develop novel approaches for disentangling distinctly oriented fiber populations. Perhaps an even greater challenge occurs when multiple white matter bundles converge within a single voxel, or throughout a single brain region, and share the same parallel orientation, before diverging and continuing towards their final cortical or sub-cortical terminations. These so-called "bottleneck" regions contribute to the ill-posed nature of the tractography process, and lead to both false positive and false negative estimated connections. Yet, as opposed to the extent of crossing fibers, a thorough characterization of bottleneck regions has not been performed. The aim of this study is to quantify the prevalence of bottleneck regions. To do this, we use diffusion tractography to segment known white matter bundles of the brain, and assign each bundle to voxels they pass through and to specific orientations within those voxels (i.e. fixels). We demonstrate that bottlenecks occur in greater than 50-70% of fixels in the white matter of the human brain. We find that all projection, association, and commissural fibers contribute to, and are affected by, this phenomenon, and show that even regions traditionally considered "single fiber voxels" often contain multiple fiber populations. Together, this study shows that a majority of white matter presents bottlenecks for tractography which may lead to incorrect or erroneous estimates of brain connectivity or quantitative tractography (i.e., tractometry), and underscores the need for a paradigm shift in the process of tractography and bundle segmentation for studying the fiber pathways of the human brain.


2021 ◽  
Author(s):  
Bramsh Qamar Chandio ◽  
Tamoghna Chattopadhyay ◽  
Conor Owens-Walton ◽  
Julio E Villalon Reina ◽  
Leila Nabulsi ◽  
...  

Whole-brain tractograms generated from diffusion MRI digitally represent the white matter structure of the brain and are composed of millions of streamlines. Such tractograms can have false positive and anatomically implausible streamlines. To obtain anatomically relevant streamlines and tracts, supervised and unsupervised methods can be used for tractogram clustering and tract extraction. Here we propose FiberNeat, an unsupervised streamline clustering and tract filtering method. FiberNeat takes an input set of streamlines that could either be unlabeled clusters or labeled tracts. Individual clusters/tracts are projected into a latent space using nonlinear dimensionality reduction techniques, such as t-SNE and UMAP, to find spurious and outlier streamlines. In addition, outlier streamline clusters are detected using DBSCAN and then removed from the data in streamline space. Quantitative comparisons with expertly delineated tracts show the promise of the approach. This approach can be deployed as a filtering step after tracts are extracted.


2019 ◽  
Vol 3 (4) ◽  
pp. 1038-1050 ◽  
Author(s):  
Céline Delettre ◽  
Arnaud Messé ◽  
Leigh-Anne Dell ◽  
Ophélie Foubet ◽  
Katja Heuer ◽  
...  

The anatomical wiring of the brain is a central focus in network neuroscience. Diffusion MRI tractography offers the unique opportunity to investigate the brain fiber architecture in vivo and noninvasively. However, its reliability is still highly debated. Here, we explored the ability of diffusion MRI tractography to match invasive anatomical tract-tracing connectivity data of the ferret brain. We also investigated the influence of several state-of-the-art tractography algorithms on this match to ground truth connectivity data. Tract-tracing connectivity data were obtained from retrograde tracer injections into the occipital, parietal, and temporal cortices of adult ferrets. We found that the relative densities of projections identified from the anatomical experiments were highly correlated with the estimates from all the studied diffusion tractography algorithms (Spearman’s rho ranging from 0.67 to 0.91), while only small, nonsignificant variations appeared across the tractography algorithms. These results are comparable to findings reported in mouse and monkey, increasing the confidence in diffusion MRI tractography results. Moreover, our results provide insights into the variations of sensitivity and specificity of the tractography algorithms, and hence into the influence of choosing one algorithm over another.


2022 ◽  
pp. 98-112
Author(s):  
Strivathsav Ashwin Ramamoorthy

To understand more about the human brain and how it works, it is vital to understand how the neural circuits connect different regions of the brain. The human brain is filled predominantly with water and the majority of the water molecules undergo diffusion which can be captured with the help of diffusion MRI. Diffusion weighted images enable us to reconstruct the neural circuits in a non-invasive manner, and this procedure is referred to as tractography. Tractography aids neurosurgeons to understand the neural connectivity of the patient. This chapter attempts to explain the procedure of tractography and different types of algorithms.


Sign in / Sign up

Export Citation Format

Share Document