scholarly journals Comparison between diffusion MRI tractography and histological tract-tracing of cortico-cortical structural connectivity in the ferret brain

2019 ◽  
Vol 3 (4) ◽  
pp. 1038-1050 ◽  
Author(s):  
Céline Delettre ◽  
Arnaud Messé ◽  
Leigh-Anne Dell ◽  
Ophélie Foubet ◽  
Katja Heuer ◽  
...  

The anatomical wiring of the brain is a central focus in network neuroscience. Diffusion MRI tractography offers the unique opportunity to investigate the brain fiber architecture in vivo and noninvasively. However, its reliability is still highly debated. Here, we explored the ability of diffusion MRI tractography to match invasive anatomical tract-tracing connectivity data of the ferret brain. We also investigated the influence of several state-of-the-art tractography algorithms on this match to ground truth connectivity data. Tract-tracing connectivity data were obtained from retrograde tracer injections into the occipital, parietal, and temporal cortices of adult ferrets. We found that the relative densities of projections identified from the anatomical experiments were highly correlated with the estimates from all the studied diffusion tractography algorithms (Spearman’s rho ranging from 0.67 to 0.91), while only small, nonsignificant variations appeared across the tractography algorithms. These results are comparable to findings reported in mouse and monkey, increasing the confidence in diffusion MRI tractography results. Moreover, our results provide insights into the variations of sensitivity and specificity of the tractography algorithms, and hence into the influence of choosing one algorithm over another.

2019 ◽  
Author(s):  
C. Delettre ◽  
A. Messé ◽  
L-A. Dell ◽  
O. Foubet ◽  
K. Heuer ◽  
...  

AbstractThe anatomical wiring of the brain is a central focus in network neuroscience. Diffusion MRI tractography offers the unique opportunity to investigate the brain fiber architecture in vivo and non invasively. However, its reliability is still highly debated. Here, we explored the ability of diffusion MRI tractography to match invasive anatomical tract-tracing connectivity data of the ferret brain. We also investigated the influence of several state-of-the-art tractography algorithms on this match to ground truth connectivity data. Tract-tracing connectivity data were obtained from retrograde tracer injections into the occipital, parietal and temporal cortices of adult ferrets. We found that the relative densities of projections identified from the anatomical experiments were highly correlated with the estimates from all the studied diffusion tractography algorithms (Spearman’s rho ranging from 0.67 to 0.91), while only small, non-significant variations appeared across the tractography algorithms. These results are comparable to findings reported in mouse and monkey, increasing the confidence in diffusion MRI tractography results. Moreover, our results provide insights into the variations of sensitivity and specificity of the tractography algorithms and hence, into the influence of choosing one algorithm over another.


2021 ◽  
Vol 376 (1821) ◽  
pp. 20190765 ◽  
Author(s):  
Giovanni Pezzulo ◽  
Joshua LaPalme ◽  
Fallon Durant ◽  
Michael Levin

Nervous systems’ computational abilities are an evolutionary innovation, specializing and speed-optimizing ancient biophysical dynamics. Bioelectric signalling originated in cells' communication with the outside world and with each other, enabling cooperation towards adaptive construction and repair of multicellular bodies. Here, we review the emerging field of developmental bioelectricity, which links the field of basal cognition to state-of-the-art questions in regenerative medicine, synthetic bioengineering and even artificial intelligence. One of the predictions of this view is that regeneration and regulative development can restore correct large-scale anatomies from diverse starting states because, like the brain, they exploit bioelectric encoding of distributed goal states—in this case, pattern memories. We propose a new interpretation of recent stochastic regenerative phenotypes in planaria, by appealing to computational models of memory representation and processing in the brain. Moreover, we discuss novel findings showing that bioelectric changes induced in planaria can be stored in tissue for over a week, thus revealing that somatic bioelectric circuits in vivo can implement a long-term, re-writable memory medium. A consideration of the mechanisms, evolution and functionality of basal cognition makes novel predictions and provides an integrative perspective on the evolution, physiology and biomedicine of information processing in vivo . This article is part of the theme issue ‘Basal cognition: multicellularity, neurons and the cognitive lens’.


2020 ◽  
Author(s):  
Thijs Dhollander ◽  
Adam Clemente ◽  
Mervyn Singh ◽  
Frederique Boonstra ◽  
Oren Civier ◽  
...  

Diffusion MRI has provided the neuroimaging community with a powerful tool to acquire in-vivo data sensitive to microstructural features of white matter, up to 3 orders of magnitude smaller than typical voxel sizes. The key to extracting such valuable information lies in complex modelling techniques, which form the link between the rich diffusion MRI data and various metrics related to the microstructural organisation. Over time, increasingly advanced techniques have been developed, up to the point where some diffusion MRI models can now provide access to properties specific to individual fibre populations in each voxel in the presence of multiple "crossing" fibre pathways. While highly valuable, such fibre-specific information poses unique challenges for typical image processing pipelines and statistical analysis. In this work, we review the "fixel-based analysis" (FBA) framework that implements bespoke solutions to this end, and has recently seen a stark increase in adoption for studies of both typical (healthy) populations as well as a wide range of clinical populations. We describe the main concepts related to fixel-based analyses, as well as the methods and specific steps involved in a state-of-the-art FBA pipeline, with a focus on providing researchers with practical advice on how to interpret results. We also include an overview of the scope of current fixel-based analysis studies (until August 2020), categorised across a broad range of neuroscientific domains, listing key design choices and summarising their main results and conclusions. Finally, we critically discuss several aspects and challenges involved with the fixel-based analysis framework, and outline some directions and future opportunities.


Data ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 29 ◽  
Author(s):  
Ahmad Khan ◽  
Sune Jespersen ◽  
Ove Wiborg ◽  
Christopher Kroenke ◽  
Brian Hansen

This article presents longitudinal 1H-MR Spectroscopy (1H-MRS) data from ventral hippocampus and in vivo diffusion MRI (dMRI) data of the brain from control and anhedonic rats. The 1H-MRS and dMRI data were acquired using a 9.4 T preclinical imaging system. Before MRI experiments, animals were exposed to unpredictable chronic mild stress exposure for eight weeks and on the basis of a sucrose consumption test were identified as anhedonic and resilient. An age-matched group of animals, unexposed to the unpredictable chronic mild stress paradigm was considered as control. Data was acquired at the age of 18, 20 and 25 weeks in the anhedonic group and at the age of 18 and 22 weeks in the control group. This multimodal MRI data provides metabolic information of ventral hippocampus and dMRI based microstructural parameters of the brain.


2020 ◽  
Author(s):  
Colin B Hansen ◽  
Qi Yang ◽  
Ilwoo Lyu ◽  
Francois Rheault ◽  
Cailey Kerley ◽  
...  

AbstractBrain atlases have proven to be valuable neuroscience tools for localizing regions of interest and performing statistical inferences on populations. Although many human brain atlases exist, most do not contain information about white matter structures, often neglecting them completely or labelling all white matter as a single homogenous substrate. While few white matter atlases do exist based on diffusion MRI fiber tractography, they are often limited to descriptions of white matter as spatially separate “regions” rather than as white matter “bundles” or fascicles, which are well-known to overlap throughout the brain. Additional limitations include small sample sizes, few white matter pathways, and the use of outdated diffusion models and techniques. Here, we present a new population-based collection of white matter atlases represented in both volumetric and surface coordinates in a standard space. These atlases are based on 2443 subjects, and include 216 white matter bundles derived from 6 different state-of-the-art tractography techniques. This atlas is freely available and will be a useful resource for parcellation and segmentation.


2021 ◽  
Author(s):  
Alessandro Crimi

The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function. Or simply, it can be used to find novel biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re-weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of an autoregressive model constrained by the structural connectivity prior. The model has been designed to also include indirect connections, allowing to split direct and indirect components in the functional connectivity, and it can be used with raw and deconvoluted BOLD signal.The derived representation of dependencies was compared to the well known dynamic causal model, giving results closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the functional interactions in the community detection task, while maintaining the original structural organization, and obtaining a better discrimination in the case-control classification task.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 467 ◽  
Author(s):  
Ke Chen ◽  
Dandan Zhu ◽  
Jianwei Lu ◽  
Ye Luo

Automatic reconstructing of neural circuits in the brain is one of the most crucial studies in neuroscience. Connectomes segmentation plays an important role in reconstruction from electron microscopy (EM) images; however, it is rather challenging due to highly anisotropic shapes with inferior quality and various thickness. In our paper, we propose a novel connectomes segmentation framework called adversarial and densely dilated network (ADDN) to address these issues. ADDN is based on the conditional Generative Adversarial Network (cGAN) structure which is the latest advance in machine learning with power to generate images similar to the ground truth especially when the training data is limited. Specifically, we design densely dilated network (DDN) as the segmentor to allow a deeper architecture and larger receptive fields for more accurate segmentation. Discriminator is trained to distinguish generated segmentation from manual segmentation. During training, such adversarial loss function is optimized together with dice loss. Extensive experimental results demonstrate that our ADDN is effective for such connectomes segmentation task, helping to retrieve more accurate segmentation and attenuate the blurry effects of generated boundary map. Our method obtains state-of-the-art performance while requiring less computation on ISBI 2012 EM dataset and mouse piriform cortex dataset.


2020 ◽  
Author(s):  
Oren Civier ◽  
Marion Sourty ◽  
Fernando Calamante

AbstractWe introduce a connectomics metric that integrates information on structural connectivity (SC) from diffusion MRI tractography and functional connectivity (FC) from resting-state functional MRI, at individual subject level. The metric is based on the ability of SC to broadly predict FC using a simple linear predictive model; for each connection in the brain, the metric quantifies the deviation from that model. For the metric to capture underlying physiological properties, we minimise systematic measurement errors and processing biases in both SC and FC, and address several challenges with the joint analysis. This also includes a data-driven normalisation approach. The combined metric may provide new information by indirectly assessing white matter structural properties that cannot be inferred from diffusion MRI alone, and/or complex interregional neural interactions that cannot be inferred from functional MRI alone. To demonstrate the utility of the metric, we used young adult data from the Human Connectome Project to examine all bilateral pairs of ipsilateral connections, i.e. each left-hemisphere connection in the brain was paired with its right-hemisphere homologue. We detected a minority of bilateral pairs where the metric value is significantly different across hemispheres, which we suggest reflects cases of ipsilateral connections that have distinct functional specialisation in each hemisphere. The pairs with significant effects spanned all cortical lobes, and also included several cortico-subcortical connections. Our findings highlight the potential in a joint analysis of structural and functional measures of connectivity, both for clinical applications and to help in the interpretation of results from standard functional connectivity analysis.Significance StatementBased on the notion that structure predicts function, the scientific community sought to demonstrate that structural information on fibre bundles that connect brain regions is sufficient to estimate the strength of interregional interactions. However, an accurate prediction using MRI has proved elusive. This paper posits that the failure to predict function from structure originates from limitations in measurement or interpretation of either diffusion MRI (to assess fibre bundles), fMRI (to assess functional interactions), or both. We show that these limitations can be nevertheless beneficial, as the extent of divergence between the two modalities may reflect hard-to-measure properties of interregional connections, such as their functional role in the brain. This provides many insights, including into the division of labour between hemispheres.


2021 ◽  
Author(s):  
Mo Shahdloo ◽  
Urs Schuffelgen ◽  
Daniel Papp ◽  
Karla Miller ◽  
Mark Chiew

Purpose: To estimate dynamic off-resonance due to vigorous body motion in accelerated fMRI of awake behaving non-human primates (NHPs) using the standard EPI 3-line navigator, in order to attenuate the effects of time-varying off-resonance on the reconstruction. Methods: In NHP fMRI the animal's head is usually head-posted, and the dynamic off-resonance is mainly caused by motion in body parts that are distant from the brain and have low spatial frequency. Hence, off-resonance at each frame can be approximated as a spatially linear perturbation of the off-resonance at a reference frame, and is manifested as a relative linear shift in k-space. Using GRAPPA operators, we estimated these shifts by comparing the 3-line navigator at each time frame with that at the reference frame. Estimated shifts were then used to correct the data at each frame. The proposed method was evaluated in phantom scans, simulations, and in vivo data. Results: The proposed method is shown to successfully estimate low-spatial order dynamic off-resonance perturbations, including induced linear off-resonance perturbations in phantoms, and is able to correct retrospectively corrupted data in simulations. Finally, it is shown to reduce ghosting artifacts and geometric distortions by up to 20% in simultaneous multi-slice in vivo acquisitions in awake-behaving NHPs. Conclusion: A method is proposed that does not need any sequence modification or extra acquisitions and makes accelerated awake behaving NHP imaging more robust and reliable, reducing the gap between what is possible with NHP protocols and state-of-the-art human imaging.


2020 ◽  
Author(s):  
Ryan P. Cabeen ◽  
David H. Laidlaw ◽  
Arthur W. Toga

AbstractThis paper investigates a stick stippling approach for glyph-based visualization of complex neural fiber architecture derived from diffusion magnetic resonance imaging. The presence of subvoxel crossing fibers in the brain has prompted the development of advanced modeling techniques; however, there remains a need for improved visualization techniques to more clearly convey their rich structure. While tractography can illustrate large scale anatomy, visualization of diffusion models can provide a more complete picture of local anatomy without the known limitations of tracking. We identify challenges and evaluate techniques for visualizing multi-fiber models and identified techniques that improve on existing methods. We conducted experiments to compare these representations and evaluated them with in vivo diffusion MR datasets that vary in voxel resolution and anisotropy. We found that stick rendering as 3D tubes increased legibility of fiber orientation and that encoding fiber density by tube radius reduced clutter and reduced dependence on viewing orientation. Furthermore, we identified techniques to reduce the negative perceptual effects of voxel gridding through a jittering and re-sampling approach to produce a stippling effect. Looking forward, this approach provides a new way to explore diffusion MRI datasets that may aid in the visual analysis of white matter fiber architecture and microstructure. Our software implementation is available in the Quantitative Imaging Toolkit (QIT).


Sign in / Sign up

Export Citation Format

Share Document