scholarly journals Increased Expression of Chondroitin Sulfotransferases following AngII may Contribute to Pathophysiology Underlying Covid-19 Respiratory Failure: Impact may be Exacerbated by Decline in Arylsulfatase B Activity

2020 ◽  
Author(s):  
Sumit Bhattacharyya ◽  
Kumar Kotlo ◽  
Joanne K. Tobacman

AbstractThe spike protein of SARS-CoV-2 binds to respiratory epithelium through the ACE2 receptor, an endogenous receptor for Angiotensin II (AngII). The mechanisms by which this viral infection leads to hypoxia and respiratory failure have not yet been elucidated. Interactions between the sulfated glycosaminoglycans heparin and heparan sulfate and the SARS-CoV-2 spike glycoprotein have been identified as participating in viral adherence and infectivity. In this brief report, we present data indicating that stimulation of vascular smooth muscle cells by AngII leads to increased expression of two chondroitin sulfotransferases (CHST11 and CHST15), which are required for the synthesis of the sulfated glycosaminoglycans chondroitin 4-sulfate (C4S) and chondroitin 4,6-disulfate (CSE). We suggest that increased expression of these chondroitin sulfotransferases and the ensuing production of chondroitin sulfates may contribute to viral adherence to bronchioalveolar cells and to the progression of respiratory disease in Covid-19. The enzyme Arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase), which removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate residues, is required for degradation of C4S and CSE. In hypoxic conditions or following treatment with chloroquine, ARSB activity is reduced. Decline in ARSB can contribute to ongoing accumulation and airway obstruction by C4S and CSE. Decline in ARSB leads to increased expression of Interleukin(IL)-6 in human bronchial epithelial cells, and IL-6 is associated with cytokine storm in Covid-19. These findings indicate how chondroitin sulfates, chondroitin sulfotransferases, and chondroitin sulfatases may participate in the progression of hypoxic respiratory insufficiency in Covid-19 disease and suggest new therapeutic targets.

2021 ◽  
Author(s):  
Arpan Acharya ◽  
Kabita Pandey ◽  
Michellie Thurman ◽  
Elizabeth Klug ◽  
Jay Trivedi ◽  
...  

SARS-CoV-2 infection initiates with the attachment of spike protein to the ACE2 receptor. While vaccines have been developed, no SARS-CoV-2 specific small molecule inhibitors have been approved. Herein, utilizing the crystal structure of the ACE2/Spike receptor binding domain (S-RBD) complex in computer-aided drug design (CADD) approach, we docked ~8 million compounds within the pockets residing at S-RBD/ACE2 interface. Five best hits depending on the docking score, were selected and tested for their in vitro efficacy to block SARS-CoV-2 replication. Of these, two compounds (MU-UNMC-1 and MU-UNMC-2) blocked SARS-CoV-2 replication at sub-micromolar IC50 in human bronchial epithelial cells (UNCN1T) and Vero cells. Furthermore, MU-UNMC-2 was highly potent in blocking the virus entry by using pseudoviral particles expressing SARS-CoV-2 spike. Finally, we found that MU-UNMC-2 is highly synergistic with remdesivir (RDV), suggesting that minimal amounts are needed when used in combination with RDV, and has the potential to develop as a potential entry inhibitor for COVID-19.


Sign in / Sign up

Export Citation Format

Share Document