scholarly journals Discovery of Drug-like Ligands for the Mac1 Domain of SARS-CoV-2 Nsp3

Author(s):  
Rajdeep S. Virdi ◽  
Robert V. Bavisotto ◽  
Nicholas C. Hopper ◽  
Nemanja Vuksanovic ◽  
Trevor R. Melkonian ◽  
...  

ABSTRACTSmall molecules that bind the SARS-CoV-2 non-structural protein 3 Mac1 domain in place of ADP-ribose could be useful as molecular probes or scaffolds for COVID-19 antiviral drug discovery because Mac1 has been linked to coronavirus’ ability to evade cellular detection. A high-throughput assay based on differential scanning fluorimetry (DSF) was therefore optimized and used to identify possible Mac1 ligands in small libraries of drugs and drug-like compounds. Numerous promising compounds included nucleotides, steroids, beta-lactams, and benzimidazoles. The main drawback to this approach was that a high percentage of compounds in some libraries were found to influence the observed Mac1 melting temperature. To prioritize DSF screening hits, the shapes of the observed melting curves and initial assay fluorescence were examined, and the results were compared with virtual screens performed using Autodock VINA. The molecular basis for alternate ligand binding was also examined by determining a structure of one of the hits, cyclic adenosine monophosphate, with atomic resolution.

2020 ◽  
Vol 25 (10) ◽  
pp. 1162-1170 ◽  
Author(s):  
Rajdeep S. Virdi ◽  
Robert V. Bavisotto ◽  
Nicholas C. Hopper ◽  
Nemanja Vuksanovic ◽  
Trevor R. Melkonian ◽  
...  

Small molecules that bind the SARS-CoV-2 nonstructural protein 3 Mac1 domain in place of ADP-ribose could be useful as molecular probes or scaffolds for COVID-19 antiviral drug discovery because Mac1 has been linked to the ability of coronaviruses to evade cellular detection. A high-throughput assay based on differential scanning fluorimetry (DSF) was therefore optimized and used to identify possible Mac1 ligands in small libraries of drugs and drug-like compounds. Numerous promising compounds included nucleotides, steroids, β-lactams, and benzimidazoles. The main drawback to this approach was that a high percentage of compounds in some libraries were found to influence the observed Mac1 melting temperature. To prioritize DSF screening hits, the shapes of the observed melting curves and initial assay fluorescence were examined, and the results were compared with virtual screens performed using AutoDock Vina. The molecular basis for alternate ligand binding was also examined by determining a structure of one of the hits, cyclic adenosine monophosphate, with atomic resolution.


Science ◽  
2020 ◽  
Vol 370 (6513) ◽  
pp. eaay3302 ◽  
Author(s):  
Jing Yan ◽  
C. Peter Bengtson ◽  
Bettina Buchthal ◽  
Anna M. Hagenston ◽  
Hilmar Bading

Excitotoxicity induced by NMDA receptors (NMDARs) is thought to be intimately linked to high intracellular calcium load. Unexpectedly, NMDAR-mediated toxicity can be eliminated without affecting NMDAR-induced calcium signals. Instead, excitotoxicity requires physical coupling of NMDARs to TRPM4. This interaction is mediated by intracellular domains located in the near-membrane portions of the receptors. Structure-based computational drug screening using the interaction interface of TRPM4 in complex with NMDARs identified small molecules that spare NMDAR-induced calcium signaling but disrupt the NMDAR/TRPM4 complex. These interaction interface inhibitors strongly reduce NMDA-triggered toxicity and mitochondrial dysfunction, abolish cyclic adenosine monophosphate–responsive element–binding protein (CREB) shutoff, boost gene induction, and reduce neuronal loss in mouse models of stroke and retinal degeneration. Recombinant or small-molecule NMDAR/TRPM4 interface inhibitors may mitigate currently untreatable human neurodegenerative diseases.


2019 ◽  
Author(s):  
Bella Grigorenko ◽  
Igor Polyakov ◽  
Alexander Nemukhin

<p>We report a mechanism of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) conversion by the mammalian type V adenylyl cyclase revealed in molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) simulations. We characterize a set of computationally derived enzyme-substrate (ES) structures showing an important role of coordination shells of magnesium ions in the solvent accessible active site. Several stable six-fold coordination shells of Mg<sub>A</sub><sup>2+ </sup>are observed in MD simulations of ES complexes. In the lowest energy ES conformation, the coordination shell of Mg<sub>A</sub><sup>2+ </sup>does not include the O<sub>δ1</sub> atom of the conserved Asp440 residue. Starting from this conformation, a one-step reaction mechanism is characterized which includes proton transfer from the ribose O<sup>3'</sup>H<sup>3' </sup>group in ATP to Asp440 via a shuttling water molecule and P<sup>A</sup>-O<sup>3A</sup> bond cleavage and O<sup>3'</sup>-P<sup>A</sup> bond formation. The energy profile of this route is consistent with the observed reaction kinetics. In a higher energy ES conformation, Mg<sub>A</sub><sup>2+</sup> is bound to the O<sub>δ1</sub>(Asp440) atom as suggested in the relevant crystal structure of the protein with a substrate analog. The computed energy profile initiated by this ES is characterized by higher energy expenses to complete the reaction. Consistently with experimental data, we show that the Asp440Ala mutant of the enzyme should exhibit a reduced but retained activity. All considered reaction pathways include proton wires from the O<sup>3'</sup>H<sup>3' </sup>group via shuttling water molecules. </p>


2019 ◽  
Vol 18 (1) ◽  
pp. 34-38
Author(s):  
Chen Lei ◽  
Pan Xiang ◽  
Shen Yonggang ◽  
Song Kai ◽  
Zhong Xingguo ◽  
...  

The aim of this study was to determine whether polydatin, a glucoside of resveratrol isolated from the root of Polygonum cuspidatum, warranted development as a potential therapeutic for ameliorating the pain originating from gallbladder spasm disorders and the underlying mechanisms. Guinea pig gallbladder smooth muscles were treated with polydatin and specific inhibitors to explore the mechanisms underpinning polydatin-induced relaxation of carbachol-precontracted guinea pig gallbladder. Our results shown that polydatin relaxed carbachol-induced contraction in a dose-dependent manner through the nitric oxide/cyclic guanosine monophosphate/protein kinase G and the cyclic adenosine monophosphate/protein kinase A signaling pathways as well as the myosin light chain kinase and potassium channels. Our findings suggested that there was value in further exploring the potential therapeutic use of polydatin in gallbladder spasm disorders.


2010 ◽  
Vol 18 (4) ◽  
pp. 6-8
Author(s):  
Stephen W. Carmichael

Some of the receptors on the surface of cardiac muscle cells (cardiomyocytes) mediate the response of these cells to catecholamines by causing the production of the common second messenger cyclic adenosine monophosphate (cAMP). An example of such receptors are the β1- and β2-adrenergic receptors (βARs) that are heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors. Selective stimulation of these two receptor subtypes leads to distinct physiological and pathophysiological responses, but their precise location on the surface of cardiomyocytes has not been correlated with these responses. In an ingenious combination of techniques, Viacheslav Nikolaev, Alexey Moshkov, Alexander Lyon, Michele Miragoli, Pavel Novak, Helen Paur, Martin Lohse, Yuri Korchev, Sian Harding, and Julia Gorelik have mapped the function of these receptors for the first time.


1972 ◽  
Vol 247 (13) ◽  
pp. 4264-4269
Author(s):  
Peter Nissley ◽  
Wayne B. Anderson ◽  
Maria Gallo ◽  
Ira Pastan ◽  
Robert L. Perlman

Sign in / Sign up

Export Citation Format

Share Document