scholarly journals Co-expression of Mitochondrial Genes and ACE2 in Cornea Involved in COVID-19 Infection

2020 ◽  
Author(s):  
Jian Yuan ◽  
Dandan Fan ◽  
Zhengbo Xue ◽  
Jia Qu ◽  
Jianzhong Su

AbstractThe Coronavirus disease 2019 (COVID-19) pandemic severely challenges public health and necessitates the need for increasing our understanding of COVID-19 pathogenesis, especially host factors facilitating virus infection and propagation. Here, the co-expression network was constructed by mapping the well-known ACE2, TMPRSS2 and host susceptibility genes implicated in COVID-19 GWAS onto a cornea, retinal pigment epithelium and lung. We found a significant co-expression module of these genes in the cornea, revealing that cornea is potential extra-respiratory entry portal of SARS-CoV-2. Strikingly, both co-expression and interaction networks show a significant enrichment in mitochondrial function, which are the hub of cellular oxidative homeostasis, inflammation and innate immune response. We identified a corneal mitochondrial susceptibility module (CMSM) of 14 mitochondrial genes by integrating ACE2 co-expression cluster and SARS-CoV-2 interactome. Gene ECSIT, as a cytosolic adaptor protein involved in inflammatory responses, exhibits the strongest correlation with ACE2 in CMSM, which has shown to be an important risk factor for SARS-CoV-2 infection and prognosis. Our co-expression and protein interaction network analysis uncover that the mitochondrial function related genes in cornea contribute to the dissection of COVID-19 susceptibility and potential therapeutic interventions.

2020 ◽  
Vol 21 (9) ◽  
pp. 3037
Author(s):  
Juha Song ◽  
Dohyun Han ◽  
Heonyi Lee ◽  
Da Jung Kim ◽  
Joo-Youn Cho ◽  
...  

Overwhelming and persistent inflammation of retinal pigment epithelium (RPE) induces destructive changes in the retinal environment. However, the precise mechanisms remain unclear. In this study, we aimed to investigate RPE-specific biological and metabolic responses against intense inflammation and identify the molecular characteristics determining pathological progression. We performed quantitative analyses of the proteome and phosphoproteome of the human-derived RPE cell line ARPE-19 after treatment with lipopolysaccharide (LPS) for 45 min or 24 h using the latest isobaric tandem-mass tags (TMTs) labeling approach. This approach led to the identification of 8984 proteins, of which 261 showed a 1.5-fold change in abundance after 24 h of treatment with LPS. A parallel phosphoproteome analysis identified 20,632 unique phosphopeptides from 3207 phosphoproteins with 3103 phosphorylation sites. Integrated proteomic and phosphoproteomic analyses showed significant downregulation of proteins related to mitochondrial respiration and cell cycle checkpoint, while proteins related to lipid metabolism, amino acid metabolism, cell-matrix adhesion, and endoplasmic reticulum (ER) stress were upregulated after LPS stimulation. Further, phosphorylation events in multiple pathways, including MAPKK and Wnt/β-catenin signalings, were identified as involved in LPS-triggered pathobiology. In essence, our findings reveal multiple integrated signals exerted by RPE under inflammation and are expected to give insight into the development of therapeutic interventions for RPE disorders.


2014 ◽  
Vol 307 (1) ◽  
pp. G16-G23 ◽  
Author(s):  
Anne E. Powell ◽  
Gregory Vlacich ◽  
Zhen-Yang Zhao ◽  
Eliot T. McKinley ◽  
M. Kay Washington ◽  
...  

Individuals with familial adenomatous polyposis (FAP) harbor a germline mutation in adenomatous polyposis coli ( APC). The major clinical manifestation is development of multiple colonic tumors at a young age due to stochastic loss of the remaining APC allele. Extracolonic features, including periampullary tumors, gastric abnormalities, and congenital hypertrophy of the retinal pigment epithelium, may occur. The objective of this study was to develop a mouse model that simulates these features of FAP. We combined our Lrig1-CreERT2/+ mice with Apcfl/+ mice, eliminated one copy of Apc in leucine-rich repeats and immunoglobulin-like domains protein 1 (Lrig1)-positive (Lrig1+) progenitor cells with tamoxifen injection, and monitored tumor formation in the colon by colonoscopy and PET. Initial loss of one Apc allele in Lrig1+ cells results in a predictable pattern of preneoplastic changes, culminating in multiple distal colonic tumors within 50 days of induction, as well as the extracolonic manifestations of FAP mentioned above. We show that tumor formation can be monitored by noninvasive PET imaging. This inducible stem cell-driven model recapitulates features of FAP and offers a tractable platform on which therapeutic interventions can be monitored over time by colonoscopy and noninvasive imaging.


2020 ◽  
Vol 21 (11) ◽  
pp. 3830 ◽  
Author(s):  
Yan Levitsky ◽  
Sandra S. Hammer ◽  
Kiera P. Fisher ◽  
Chao Huang ◽  
Travan L. Gentles ◽  
...  

Mitochondrial damage in the cells comprising inner (retinal endothelial cells) and outer (retinal pigment epithelium (RPE)) blood–retinal barriers (BRB) is known to precede the initial BRB breakdown and further histopathological abnormalities in diabetic retinopathy (DR). We previously demonstrated that activation of acid sphingomyelinase (ASM) is an important early event in the pathogenesis of DR, and recent studies have demonstrated that there is an intricate connection between ceramide and mitochondrial function. This study aimed to determine the role of ASM-dependent mitochondrial ceramide accumulation in diabetes-induced RPE cell damage. Mitochondria isolated from streptozotocin (STZ)-induced diabetic rat retinas (7 weeks duration) showed a 1.64 ± 0.29-fold increase in the ceramide-to-sphingomyelin ratio compared to controls. Conversely, the ceramide-to-sphingomyelin ratio was decreased in the mitochondria isolated from ASM-knockout mouse retinas compared to wild-type littermates, confirming the role of ASM in mitochondrial ceramide production. Cellular ceramide was elevated 2.67 ± 1.07-fold in RPE cells derived from diabetic donors compared to control donors, and these changes correlated with increased gene expression of IL-1β, IL-6, and ASM. Treatment of RPE cells derived from control donors with high glucose resulted in elevated ASM, vascular endothelial growth factor (VEGF), and intercellular adhesion molecule 1 (ICAM-1) mRNA. RPE from diabetic donors showed fragmented mitochondria and a 2.68 ± 0.66-fold decreased respiratory control ratio (RCR). Treatment of immortalized cell in vision research (ARPE-19) cells with high glucose resulted in a 25% ± 1.6% decrease in citrate synthase activity at 72 h. Inhibition of ASM with desipramine (15 μM, 1 h daily) abolished the decreases in metabolic functional parameters. Our results are consistent with diabetes-induced increase in mitochondrial ceramide through an ASM-dependent pathway leading to impaired mitochondrial function in the RPE cells of the retina.


2009 ◽  
Vol 297 (6) ◽  
pp. C1452-C1465 ◽  
Author(s):  
Rong Li ◽  
Arvydas Maminishkis ◽  
Tina Banzon ◽  
Qin Wan ◽  
Stephen Jalickee ◽  
...  

The present experiments show that IFNγ receptors are mainly localized to the basolateral membrane of human retinal pigment epithelium (RPE). Activation of these receptors in primary cultures of human fetal RPE inhibited cell proliferation and migration, decreased RPE mitochondrial membrane potential, altered transepithelial potential and resistance, and significantly increased transepithelial fluid absorption. These effects are mediated through JAK-STAT and p38 MAPK signaling pathways. Second messenger signaling through cAMP-PKA pathway- and interferon regulatory factor-1-dependent production of nitric oxide/cGMP stimulated the CFTR at the basolateral membrane and increased transepithelial fluid absorption. In vivo experiments using a rat model of retinal reattachment showed that IFNγ applied to the anterior surface of the eye can remove extra fluid deposited in the extracellular or subretinal space between the retinal photoreceptors and RPE. Removal of this extra fluid was blocked by a combination of PKA and JAK-STAT pathway inhibitors injected into the subretinal space. These results demonstrate a protective role for IFNγ in regulating retinal hydration across the outer blood-retinal barrier in inflammatory disease processes and provide the basis for possible therapeutic interventions.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2483
Author(s):  
Sonali Nashine

Aging contributes to the risk of development of ocular diseases including, but not limited to, Age-related Macular Degeneration (AMD) that is a leading cause of blindness in the United States as well as worldwide. Retinal aging, that contributes to AMD pathogenesis, is characterized by accumulation of drusen deposits, alteration in the composition of Bruch’s membrane and extracellular matrix, vascular inflammation and dysregulation, mitochondrial dysfunction, and accumulation of reactive oxygen species (ROS), and subsequent retinal pigment epithelium (RPE) cell senescence. Since there are limited options available for the prophylaxis and treatment of AMD, new therapeutic interventions are constantly being looked into to identify new therapeutic targets for AMD. This review article discusses the potential candidates for AMD therapy and their known mechanisms of cytoprotection in AMD. These target therapeutic candidates include APE/REF-1, MRZ-99030, Ciliary NeuroTrophic Factor (CNTF), RAP1 GTPase, Celecoxib, and SS-31/Elamipretide.


EBioMedicine ◽  
2019 ◽  
Vol 39 ◽  
pp. 315-331 ◽  
Author(s):  
Yannick Simonin ◽  
Nejla Erkilic ◽  
Krishna Damodar ◽  
Marion Clé ◽  
Caroline Desmetz ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Keng Siang Lee ◽  
Shuxiao Lin ◽  
David A. Copland ◽  
Andrew D. Dick ◽  
Jian Liu

AbstractAge-related macular degeneration (AMD), a degenerative disease in the central macula area of the neuroretina and the supporting retinal pigment epithelium, is the most common cause of vision loss in the elderly. Although advances have been made, treatment to prevent the progressive degeneration is lacking. Besides the association of innate immune pathway genes with AMD susceptibility, environmental stress- and cellular senescence-induced alterations in pathways such as metabolic functions and inflammatory responses are also implicated in the pathophysiology of AMD. Cellular senescence is an adaptive cell process in response to noxious stimuli in both mitotic and postmitotic cells, activated by tumor suppressor proteins and prosecuted via an inflammatory secretome. In addition to physiological roles in embryogenesis and tissue regeneration, cellular senescence is augmented with age and contributes to a variety of age-related chronic conditions. Accumulation of senescent cells accompanied by an impairment in the immune-mediated elimination mechanisms results in increased frequency of senescent cells, termed “chronic” senescence. Age-associated senescent cells exhibit abnormal metabolism, increased generation of reactive oxygen species, and a heightened senescence-associated secretory phenotype that nurture a proinflammatory milieu detrimental to neighboring cells. Senescent changes in various retinal and choroidal tissue cells including the retinal pigment epithelium, microglia, neurons, and endothelial cells, contemporaneous with systemic immune aging in both innate and adaptive cells, have emerged as important contributors to the onset and development of AMD. The repertoire of senotherapeutic strategies such as senolytics, senomorphics, cell cycle regulation, and restoring cell homeostasis targeted both at tissue and systemic levels is expanding with the potential to treat a spectrum of age-related diseases, including AMD.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5409 ◽  
Author(s):  
Ji Yeon Choi ◽  
Ji-Eun Bae ◽  
Joon Bum Kim ◽  
Doo Sin Jo ◽  
Na Yeon Park ◽  
...  

Primary cilia mediate the interactions between cells and external stresses. Thus, dysregulation of primary cilia is implicated in various ciliopathies, e.g., degeneration of the retina caused by dysregulation of the photoreceptor primary cilium. Particulate matter (PM) can cause epithelium injury and endothelial dysfunction by increasing oxidative stress and inflammatory responses. Previously, we showed that PM disrupts the formation of primary cilia in retinal pigment epithelium (RPE) cells. In the present study, we identified 2-isopropylmalic acid (2-IPMA) as a novel inducer of primary ciliogenesis from a metabolite library screening. Both ciliated cells and primary cilium length were increased in 2-IPMA-treated RPE cells. Notably, 2-IPMA strongly promoted primary ciliogenesis and restored PM2.5-induced dysgenesis of primary cilia in RPE cells. Both excessive reactive oxygen species (ROS) generation and activation of a stress kinase, JNK, by PM2.5 were reduced by 2-IPMA. Moreover, 2-IPMA inhibited proinflammatory cytokine production, i.e., IL-6 and TNF-α, induced by PM2.5 in RPE cells. Taken together, our data suggest that 2-IPMA ameliorates PM2.5-induced inflammation by promoting primary ciliogenesis in RPE cells.


Sign in / Sign up

Export Citation Format

Share Document