scholarly journals Suv39h-catalysed H3K9me3 is critical for euchromatic genome organisation and the maintenance of gene transcription

2020 ◽  
Author(s):  
Christine R. Keenan ◽  
Hannah D. Coughlan ◽  
Nadia Iannarella ◽  
Timothy M. Johanson ◽  
Wing Fuk Chan ◽  
...  

SummaryH3K9me3-dependent heterochromatin is critical for the silencing of repeat-rich pericentromeric regions and also has key roles in repressing lineage-inappropriate protein-coding genes in differentiation and development. Here, we investigate the molecular consequences of heterochromatin loss in cells deficient in both Suv39h1 and Suv39h2 (Suv39DKO), the major mammalian histone methyltransferase enzymes that catalyse heterochromatic H3K9me3 deposition. Unexpectedly, we reveal a predominant repression of protein-coding genes in Suv39DKO cells, with these differentially expressed genes principally in euchromatic (DNaseI-accessible, H3K27ac-marked) rather than heterochromatic (H3K9me3-marked) regions. Examination of the 3D nucleome reveals that transcriptomic dysregulation occurs in euchromatic regions close to the nuclear periphery in 3-dimensional space. Moreover, this transcriptomic dysregulation is highly correlated with altered 3-dimensional genome organization in Suv39DKO cells. Together, our results suggest that the nuclear lamina-tethering of Suv39-dependent H3K9me3 domains provides an essential scaffold to support euchromatic genome organisation and the maintenance of gene transcription for healthy cellular function.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2989-2989 ◽  
Author(s):  
Mehmet K Samur ◽  
Annamaria Gulla ◽  
Alice Cleynen ◽  
Florence Magrangeas ◽  
Stephane Minvielle ◽  
...  

Abstract Long intergenic non-coding RNA (lincRNA) are transcripts longer than 200 nucleotides which have a diverse sets of regulatory functions but do not get translated into protein. lincRNAs are located between the protein coding genes and do not overlap exons of either protein-coding or other non-lincRNA. However precise role of individual lincRNA in disease biology remains unclear. Here, we have evaluated the lincRNA expression and their potential biological functions in MM. We performed RNA-seq on CD138+ MM cells from 296 newly diagnosed patients and 16 normal bone marrow plasma cells (NBM) and analyzed for lincRNA expression. Data from paired-end RNAseq reads were mapped to the latest human genome, differentially expressed lincRNAs were identified and for each expressed lincRNA event free survival was examined with univariate cox regression model and support vector machine. Finally, we identified protein coding genes that are strongly correlated (cor > 0.5) with lincRNAs with significant altered expression in MM and impact on EFS to identify their biological role. lincRNA and protein coding genes that have more than 10 reads/million reads for at least 15 normal samples or 62 MM samples (20% all MM samples) were included in the analysis. We identified 60 differentially expressed lincRNA (adj p value <0.05), 51 of those had at least 1.5 fold change difference. The differentially expressed lncRNAs were in close proximity of Ig-related genes, genome stability related genes, hosting miRNAs such as mir222 and mir22 and previously reported for other cancers (PVT and TTY15). We evaluated relation of these lincRNAs with event free survival (EFS) and observed 6 lincRNAs associated with shorter EFS. We have developed multivariate signature model to predict EFS by using these 6 lincRNAs. We divided our dataset into training (n=99) and test (n=156) dataset and we utilized support vector machine classification to divide samples into 2 groups using six lincRNAs. This model was able to predict good and poor survival groups in training dataset (p val < 0.001) as well as test dataset (p val = 0.002) (Figure). We examined genome wide correlation between these six differentially expressed and prognostically significant lincRNAs to expressed protein coding genes to identify their biological functions in MM. Four of these lincRNAs strongly correlated with 47 to 504 genes (abs(cor) > 0.5), affecting immune system pathways and pathways in cancer including Jak-STAT signaling pathway. We also found that these lincRNAs are also highly correlated with tumor development genes such as TNFRSF1B,FGR,TP53BP2,TNF and T or B cells related genes PIK3CD, BCL6. In addition, two of these lincRNAs (LINC00936 and CTB-61M7.2) were found highly correlated with their protein coding neighbor genes ATP2B1(cor = 0.45) and FCAR (cor = 0.95) respectively and MIR22HG was host gene for mir22 which may indicate lincRNAs are using different machinery in MM to regulate protein coding genes. In summary, we report that lincRNA is differentially expressed and prognostically significant in myeloma and may function through their impact on immune system and tumor progression. Our ongoing integrative approach will provide further evidence of their regulatory role in MM with potential therapeutic application. Figure 1. Figure 1. Disclosures Anderson: acetylon pharmaceuticals: Equity Ownership; Celgene Corporation: Consultancy; Gilead: Consultancy; Oncocorp: Equity Ownership; Millennium: Consultancy; BMS: Consultancy. Munshi:onyx: Membership on an entity's Board of Directors or advisory committees; celgene: Membership on an entity's Board of Directors or advisory committees; novartis: Membership on an entity's Board of Directors or advisory committees; millenium: Membership on an entity's Board of Directors or advisory committees.


2000 ◽  
Vol 23 (4) ◽  
pp. 745-752 ◽  
Author(s):  
Sérgio Luiz Pereira

With the advent of DNA sequencing techniques the organization of the vertebrate mitochondrial genome shows variation between higher taxonomic levels. The most conserved gene order is found in placental mammals, turtles, fishes, some lizards and Xenopus. Birds, other species of lizards, crocodilians, marsupial mammals, snakes, tuatara, lamprey, and some other amphibians and one species of fish have gene orders that are less conserved. The most probable mechanism for new gene rearrangements seems to be tandem duplication and multiple deletion events, always associated with tRNA sequences. Some new rearrangements seem to be typical of monophyletic groups and the use of data from these groups may be useful for answering phylogenetic questions involving vertebrate higher taxonomic levels. Other features such as the secondary structure of tRNA, and the start and stop codons of protein-coding genes may also be useful in comparisons of vertebrate mitochondrial genomes.


2017 ◽  
Author(s):  
Xiaobin Zheng ◽  
Jiabiao Hu ◽  
Sibiao Yue ◽  
Lidya Kristiani ◽  
Miri Kim ◽  
...  

AbstractLamins are structural components of the nuclear lamina (NL) that regulate genome organization and gene expression, but the mechanism remains unclear. Using Hi-C, we show that lamins maintain proper interactions among the topologically associated chromatin domains (TADs) but not their overall architecture. Combining Hi-C with fluorescence in situ hybridization (FISH) and analyses of lamina-associated domains (LADs), we reveal that lamin loss causes expansion or detachment of specific LADs in mouse ES cells. The detached LADs disrupt 3D interactions of both LADs and interior chromatin. 4C and epigenome analyses further demonstrate that lamins maintain the active and repressive chromatin domains among different TADs. By combining these studies with transcriptome analyses, we found a significant correlation between transcription changes and the changes of active and inactive chromatin domain interactions. These findings provide a foundation to further study how the nuclear periphery impacts genome organization and transcription in development and NL-associated diseases.HighlightsLamin loss does not affect the overall TAD structure but alters TAD-TAD interactionsLamin null ES cells exhibit decondensation or detachment of specific LAD regionsExpansion and detachment of LADs can alter genome-wide 3D chromatin interactionsAltered chromatin domain interactions are correlated with altered transcription


2020 ◽  
Author(s):  
Abby M. Korn ◽  
Andrew E. Hillhouse ◽  
Lichang Sun ◽  
Jason J Gill

The majority of previously described Staphylococcus aureus bacteriophages belong to three major groups: P68-like Podoviridae, Twort-like or K-like Myoviridae, and a more diverse group of temperate Siphoviridae. Here we present three novel S. aureus 'jumbo' phages: MarsHill, Madawaska, and Machias. These phages were isolated from swine production environments in the United States and represent a novel clade of S. aureus Myoviridae that is largely unrelated to other known S. aureus phages. The average genome size for these phages is ~269 kb with each genome encoding ~263 predicted protein-coding genes. Phage genome organization and content is most similar to known jumbo phages of Bacillus, including AR9 and vB_BpuM-BpSp. All three phages possess genes encoding complete viral and non-viral RNA polymerases, multiple homing endonucleases, and a retron-like reverse transcriptase. Like AR9, all of these phages are presumed to have uracil-substituted DNA which interferes with DNA sequencing. These phages are also able to transduce host plasmids, which is significant as these phages were found circulating in swine production environments and can also infect human S. aureus isolates.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xianrong Wong ◽  
Victoria E. Hoskins ◽  
Ashley J. Melendez-Perez ◽  
Jennifer C. Harr ◽  
Molly Gordon ◽  
...  

Abstract Background The dynamic 3D organization of the genome is central to gene regulation and development. The nuclear lamina influences genome organization through the tethering of lamina-associated domains (LADs) to the nuclear periphery. Evidence suggests that lamins A and C are the predominant lamins involved in the peripheral association of LADs, potentially serving different roles. Results Here, we examine chromosome architecture in mouse cells in which lamin A or lamin C are downregulated. We find that lamin C, and not lamin A, is required for the 3D organization of LADs and overall chromosome organization. Striking differences in localization are present as cells exit mitosis and persist through early G1 and are linked to differential phosphorylation. Whereas lamin A associates with the nascent nuclear envelope (NE) during telophase, lamin C remains in the interior, surrounding globular LAD aggregates enriched on euchromatic regions. Lamin C association with the NE is delayed until several hours into G1 and correlates temporally and spatially with the post-mitotic NE association of LADs. Post-mitotic LAD association with the NE, and global 3D genome organization, is perturbed only in cells depleted of lamin C, and not lamin A. Conclusions Lamin C regulates LAD dynamics during exit from mitosis and is a key regulator of genome organization in mammalian cells. This reveals an unexpectedly central role for lamin C in genome organization, including inter-chromosomal LAD-LAD segregation and LAD scaffolding at the NE, raising intriguing questions about the individual and overlapping roles of lamin A/C in cellular function and disease.


2020 ◽  
Author(s):  
X Wong ◽  
VE Hoskins ◽  
JC Harr ◽  
M Gordon ◽  
KL Reddy

AbstractThe dynamic 3D organization of the genome is central to the regulation of gene expression and developmental progression, with its disruption being implicated in various diseases. The nuclear lamina, a proteinaceous meshwork underlying the nuclear envelope (NE), provides both structural and regulatory influences on genome organization through the tethering of large inactive genomic regions, called Lamina Associated Domains (LADs), to the nuclear periphery. Evidence suggests that the A type lamins, lamins A and C, are the predominant lamins involved in the peripheral association of LADs, with these two isotypes forming distinct networks and potentially involved in different cellular processes. Here we tested whether lamins A and C have distinct roles in genome organization by examining chromosome architecture in cells in which lamin C or lamin A are specifically down-regulated. We find that lamin C (not lamin A) is required for the 3D organization of LADs and overall chromosome organization in the cell nucleus. Striking differences in the localization of lamin A and lamin C are present as cells exit mitosis that persist through early G1. Whereas lamin A associates with the nascent NE during telophase, lamin C remains in the interior surrounding nucleoplasmic LAD clusters. Lamin C association with the NE is delayed until several hours into G1 and correlates temporally and spatially with the post-mitotic NE association of LADs. Post-mitotic LAD association with the NE, and consequently global 3D genome organization, is perturbed only in cells depleted of lamin C, and not in cells depleted of lamin A. We conclude that lamin C regulates LAD dynamics after mitosis and is a key regulator of genome organization in mammalian cells. These findings reveal an unexpectedly central role for lamin C in genome organization, including both inter-chromosomal LAD-LAD segregation and LAD scaffolding at the NE.


Sign in / Sign up

Export Citation Format

Share Document