Differentially Expressed and Prognostically Significant Lincrnas May Impact Immune System and Tumor Progression in Multiple Myeloma (MM)

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2989-2989 ◽  
Author(s):  
Mehmet K Samur ◽  
Annamaria Gulla ◽  
Alice Cleynen ◽  
Florence Magrangeas ◽  
Stephane Minvielle ◽  
...  

Abstract Long intergenic non-coding RNA (lincRNA) are transcripts longer than 200 nucleotides which have a diverse sets of regulatory functions but do not get translated into protein. lincRNAs are located between the protein coding genes and do not overlap exons of either protein-coding or other non-lincRNA. However precise role of individual lincRNA in disease biology remains unclear. Here, we have evaluated the lincRNA expression and their potential biological functions in MM. We performed RNA-seq on CD138+ MM cells from 296 newly diagnosed patients and 16 normal bone marrow plasma cells (NBM) and analyzed for lincRNA expression. Data from paired-end RNAseq reads were mapped to the latest human genome, differentially expressed lincRNAs were identified and for each expressed lincRNA event free survival was examined with univariate cox regression model and support vector machine. Finally, we identified protein coding genes that are strongly correlated (cor > 0.5) with lincRNAs with significant altered expression in MM and impact on EFS to identify their biological role. lincRNA and protein coding genes that have more than 10 reads/million reads for at least 15 normal samples or 62 MM samples (20% all MM samples) were included in the analysis. We identified 60 differentially expressed lincRNA (adj p value <0.05), 51 of those had at least 1.5 fold change difference. The differentially expressed lncRNAs were in close proximity of Ig-related genes, genome stability related genes, hosting miRNAs such as mir222 and mir22 and previously reported for other cancers (PVT and TTY15). We evaluated relation of these lincRNAs with event free survival (EFS) and observed 6 lincRNAs associated with shorter EFS. We have developed multivariate signature model to predict EFS by using these 6 lincRNAs. We divided our dataset into training (n=99) and test (n=156) dataset and we utilized support vector machine classification to divide samples into 2 groups using six lincRNAs. This model was able to predict good and poor survival groups in training dataset (p val < 0.001) as well as test dataset (p val = 0.002) (Figure). We examined genome wide correlation between these six differentially expressed and prognostically significant lincRNAs to expressed protein coding genes to identify their biological functions in MM. Four of these lincRNAs strongly correlated with 47 to 504 genes (abs(cor) > 0.5), affecting immune system pathways and pathways in cancer including Jak-STAT signaling pathway. We also found that these lincRNAs are also highly correlated with tumor development genes such as TNFRSF1B,FGR,TP53BP2,TNF and T or B cells related genes PIK3CD, BCL6. In addition, two of these lincRNAs (LINC00936 and CTB-61M7.2) were found highly correlated with their protein coding neighbor genes ATP2B1(cor = 0.45) and FCAR (cor = 0.95) respectively and MIR22HG was host gene for mir22 which may indicate lincRNAs are using different machinery in MM to regulate protein coding genes. In summary, we report that lincRNA is differentially expressed and prognostically significant in myeloma and may function through their impact on immune system and tumor progression. Our ongoing integrative approach will provide further evidence of their regulatory role in MM with potential therapeutic application. Figure 1. Figure 1. Disclosures Anderson: acetylon pharmaceuticals: Equity Ownership; Celgene Corporation: Consultancy; Gilead: Consultancy; Oncocorp: Equity Ownership; Millennium: Consultancy; BMS: Consultancy. Munshi:onyx: Membership on an entity's Board of Directors or advisory committees; celgene: Membership on an entity's Board of Directors or advisory committees; novartis: Membership on an entity's Board of Directors or advisory committees; millenium: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 642-642
Author(s):  
Mehmet Kemal Samur ◽  
Naim Rashid ◽  
Alice Cleynen ◽  
Mariateresa Fulciniti ◽  
Adam Sperling ◽  
...  

Abstract RNA has a diverse sets of regulatory functions besides being a messenger between DNA and protein. Recent analysis of RNA repertoire has identified a large numbers of non-coding transcripts. One of which, long intergenic non-coding RNA (lincRNA) with transcripts longer than 200 nucleotides, are located between the protein coding genes and do not overlap exons of either protein-coding or other non-lincRNA genes. lincRNAs have been considered to provide regulatory functions, however, their precise role in cellular biology remains unclear. Here, we have evaluated the lincRNA profile and their clinical role in MM. We performed RNA-seq on CD138+ MM cells from 320 patients and 18 normal bone marrow plasma cells (NBM) and analyzed for lincRNA. Data from Unstranded 50 bp paired-end RNAseq reads were mapped to the human genome and evaluated for frequency and type of lncRNA. Patient data for MM characteristics, cytogenetic and FISH as well as clinical survival outcomes were also analyzed and correlated with lncRNA data. We compared differentially expressed lincRNAs and protein coding genes in MM versus NBM samples. lincRNA and protein coding genes that have more than 2 reads/million reads for at least 50 samples (~15%) were included in the analysis. We identified 192 significantly expressed lincRNA (adj p value <0.05). We evaluated neighborhood protein coding genes for lincRNA within 500kb up/down stream and identified 298 genes within the region, 134 of these also differentially expressed between MM and NBM. Gene enrichment analysis to recognize possible biological processes that may be affected by lincRNAs and genes enriched by several Gene Ontology(GO) terms identified DNA binding, transcription, cell proliferation, and regulation of lymphocyte function. We applied unsupervised clustering method to the differentially expressed lincRNA that are neighbor of these 134 protein-coding genes. We identified four distinct clusters which are being investigated for correlation with clinical subtypes of MM. Finally we checked correlation between lincRNAs and clinical outcome including response and relapse free survival. We compared differentially expressed lincRNA between patients achieving complete response (CR) versus others and identified 16 lincRNAs with significantly different expression values (p value < 0.05). Using univariate cox regression model, 26 lincRNAs were identified as having significant correlation (cox p value < 0.05) with event-free survival (EFS). Three of these lincRNAs were also related with response prediction suggesting high level of functional and biological importance. We have developed a multivariate cox regression model utilizing these individually significant lincRNAs able to predict relapse free survival (Overall Wald test p value = 6.736e-07). Using a training set of 171 patients, we developed a cox regression multivariate survival model and created a risk score. The high and low risk based on lincRNA was validated using this model in 85 independent patients (log-rank p = 0.04). We are in the process of now integrating the gene expression data with lincRNA data to develop an integrated survival model. In summary, we report the first differential lincRNA expression in MM showing a significant role in disease biology as well as clinical outcome. lincRNAs are still functionally poorly characterized and our ongoing integrative approach will provide a link between lincRNAs and protein coding genes in MM. Disclosures Anderson: Celgene: Consultancy; Sanofi-Aventis: Consultancy; Onyx: Consultancy; Acetylon: Scientific Founder, Scientific Founder Other; Oncoprep: Scientific Founder Other; Gilead Sciences: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 13-14
Author(s):  
Carlos Saúl Rodríguez-Roque ◽  
Andres Gomez-De Leon ◽  
Michelle Morcos-Sandino ◽  
Nelson Josafat López-Flores ◽  
David David Galindo-Calvillo ◽  
...  

Introduction Corticosteroids are the first line therapy for autoimmune hemolytic anemia (AIHA), but are associated with significant adverse events, dependency and frequent relapses. Rituximab is reserved for severe or steroid-resistant disease. Low-dose rituximab is also effective, but its efficacy in the first line has been poorly described. We report our results with this combination. Methods Adults older than 16 years newly diagnosed with warm antibody AIHA either primary or secondary were included. Patients systematically received dexamethasone 40 mg for 4 days followed by a 1 mg/kg rapid prednisone taper plus rituximab 100 mg weekly for 4 doses. Our primary outcome was response at day 28 based on the First International Consensus Meeting (complete response: normalization of Hb, no evidence of hemolysis and absence of transfusions; response: increase of Hb by &gt;2g/dl, or normalization of biochemical resolution of hemolysis or absence of transfusion in 7 days), secondary outcome was event-free survival with an event defined as a laboratory or clinical relapse or loss of response. Results Sixteen patients were treated with low-dose rituximab during the study period, ten women (62.5%), six men (37.5%). The median age was 34 years (range, 17-78). Three (18.75%) were secondary to lupus erythematosus. The median follow-up was 20 months (range, 0.4-66). Most received 4 doses of rituximab (87.5%). All patients responded at day 28, (100%) 31.2% achieved a complete response (CR). Subsequently, 81.3% achieved CR. Ten (62.5%) were considered steroid-dependent, however, most discontinued treatment without loss of response (75%). The event-free survival was 63.8% to 5 years. Conclusion Low-dose rituximab therapy as a first-line in AIHA showed encouraging results as most patients were able to discontinue treatment without relapse. Disclosures Gomez-Almaguer: Amgen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; AbbVie: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene/BMS: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; AstraZeneca: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pfizer: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Roche: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-30
Author(s):  
Josep-Maria Ribera ◽  
Olga García ◽  
Pau Montesinos ◽  
Pilar Martinez ◽  
Jordi Esteve ◽  
...  

Background and objective. The combination of tyrosine kinase inhibitors (TKI) and chemotherapy (intensive, attenuated or minimal) has improved the prognosis of patients (pts) with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). The combination of HyperCVAD and ponatinib has improved the molecular response and survival compared with other combinations of chemotherapy with first or second generation TKI (Jabbour E, et al, Lancet Haematol. 2018; 5:e618-e627). The Spanish PETHEMA group conducted the phase 2 PONALFIL trial, which incorporates ponatinib to the same induction and consolidation schedule of the ALL Ph08 trial (Ribera JM et al. Cancer 2019;125:2810-2817) The results of this trial after completed recruitment are herein reported. Patients and method. The PONALFIL trial (NCT02776605) combined ponatinib (30 mg/d) and induction chemotherapy (vincristine, daunorubicin and prednisone) followed by consolidation (high-dose methotrexate, ARA-C, mercaptopurine, etoposide) and allogeneic HSCT. TKI use as maintenance was only scheduled for pts with persistence or reappearance of MRD. By July 2020 the 30 scheduled pts were recruited. The response to therapy (complete morphological [CR], molecular [complete, CMR or major, MMR] after induction and before allogeneic HSCT) (assessed by centralized BCR-ABL/ABL ratio),event-free survival (EFS), overall survival [OS]) and toxicity are herein analyzed. Results. Median age was 50 (20-59) years and 14/30 pts were female. One pt showed CNS involvement at diagnosis. ECOG score at diagnosis was &lt;2 in 86% of pts. Median of WBC count was 6.4 (0.6-359.3) x109/L, Hb 90 (63-145) g/L, platelets 38 (11-206) x109/L. The immunologic phenotype was common in 26 cases, with molecular isoform p190 in 20 patients (67%), p210 in 9 (30%) and p230 in 1 (3%). CR was attained 26/26 patients (100%) (4 are still on induction therapy), with CMR in 11/26 cases (42%), MMR in 6/26 (23%) and no molecular response in 9/26 (35%)).Two patients withdrew the trial (thrombosis of the central retina artery and severe intestinal infection, one case each). Consolidation was given to 24 patients, 2/24 are receiving consolidation and 22 patients received allogeneic HSCT (14 in CMR, 6 in MMR, 2 without molecular response). No relapses before HSCT were detected. No transplant-related mortality was observed to date, but 1 patient withdrew the trial by severe GVHD. Ponatinib was given after HSCT in 4 pts due to loss of molecular response. Three pts relapsed after HSCT, one of them after documented loss of molecular response. All pts are alive (median follow-up of 4.5 months, range 0.5-26.2.2). The EFS probability at 30 months was 91% (79%, 100%) (Figure 1). One hundred and two adverse events (AE) have been registered in 20 patients, 25 of whom were severe (SAE) and occurred in 14 patients, prompting to withdrawn of the trial in 3 (thrombosis of the central artery of the retina, severe bowel infection, grade IV aGVHD, one case each). The most frequent AE were hematologic (26%), gastrointestinal (15%), infections (10%), hepatic (8%) and cutaneous (5%). Cardiovascular events occurred in 2 patients (angor pectoris and thrombosis of central artery of the retina, one case each). Conclusions. The preliminary results of the PONALFIL trial after recruitment completed show a high short-term antileukemic efficacy with acceptable toxicity profile. Supported in part by grant 2017 SGR288 (GRC) Generalitat de Catalunya and "La Caixa" Foundation. Figure 1. Event free survival (EFS) of the whole series. Figure 1 Disclosures Ribera: Pfizer, Amgen, Ariad, Novartis: Consultancy, Speakers Bureau; Pfizer, Amgen: Research Funding. Martinez-Lopez:Incyte: Consultancy, Research Funding; Novartis: Consultancy; BMS: Consultancy, Research Funding; Janssen-cilag: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria. Garcia-Sanz:Amgen: Membership on an entity's Board of Directors or advisory committees; BMS: Honoraria; Gilead: Honoraria, Research Funding; Incyte: Research Funding; Janssen: Honoraria, Research Funding; Novartis: Honoraria; Pharmacyclics: Honoraria; Takeda: Consultancy, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 338-338
Author(s):  
Bradstock Kenneth ◽  
Emma Link ◽  
Juliana Di Iulio ◽  
Jeff Szer ◽  
Paula Marlton ◽  
...  

Abstract Background: Anthracylines are one of the major classes of drugs active against acute myeloid leukemia (AML). Increased doses of daunorubicin during induction therapy for AML have been shown to improve remission rates and survival. The ALLG used idarubicin in induction therapy at a dose of 9 mg/m2 x 3 days (total dose 27 mg/m2) in combination with high-dose cytarabine and etoposide (Blood 2005, 105:481), but showed that a total idarubicin dose of 36 mg/m2 was too toxic in this context (Leukemia 2001, 15:1331). In order to further improve outcomes in adult AML by anthracycline dose escalation, we conducted a phase 3 trial comparing standard to an increased idarubicin dose during consolidation therapy. Methods: Patients achieving complete remission after 1 or 2 cycles of intensive induction therapy (idarubicin 9 mg/m2 daily x3, cytarabine 3 g/m2 twice daily on days 1,3,5 and 7, and etoposide 75 mg/m2 daily x7; ICE protocol) were randomized to receive 2 cycles of consolidation therapy with cytarabine 100 mg/m2 per day for 5 days, etoposide 75 mg/m2 for 5 days, and idarubicin 9mg/m2 daily for either 2 or 3 days (standard and intensive arms respectively). No further protocol therapy was given. The primary endpoint was leukemia-free survival from randomization to consolidation therapy (LFS) with overall survival (OS) as secondary endpoint. Results: A total of 422 patients with AML (excluding cases with CBF rearrangements or APL) aged 16 to 60 years were enrolled between 2003-10, with 345 (82%) achieving complete remission, and 293 being randomized to standard (n=146) or intensive (n=147) consolidation arms. The median age was 45 years in both arms (range 16- 60), and both groups were balanced for intermediate versus unfavorable karyotypes and for frequency of mutations involving FLT3-ITD and NPM1 genes. Of the randomized patients, 120 in the standard arm (82%) and 95 in the intensive arm (65%) received the second consolidation cycle (p<0.001). The median total dose of idarubicin received in the 2 consolidation courses was 36 mg/m2 (range 17-45), or 99% (47-125%) of the protocol dose in the standard arm, versus 53 mg/m2 (18-73), or 98% (33-136%) of the protocol dose in the intensive arm. The durations of grades 3-4 neutropenia and thrombocytopenia were significantly longer in the intensive arm, but there were no differences in grade 3 or 4 non-hematological toxicities. There were no non-relapse deaths during consolidation on the standard arm and 2 in the intensive (0% vs 1%; p =0.50). Subsequently, 41 patients in the standard arm and 37 in the intensive arm underwent elective allogeneic BMT during first remission. On intention to-treat analysis uncensored for transplant and with a median follow-up time of 5.3 years (range 0.6 - 9.9), there was improvement in LFS in the intensive arm compared with the standard arm (3 year LFS 47% (95% CI 40-56%) versus 35% (28-44%); HR 0.74 (95% CI 0.55-0.99); p=0.045) (Figure 1). The 3 year OS for the intensive arm was 61% (95% CI 54-70%) and 50% (95% CI 43-59%) for the standard arm; HR 0.75 (95% CI 0.54-1.05); p=0.092). Although adverse cytogenetics, presence of FLT3-ITD mutation, and absence of NPM1 mutation were all associated with poorer outcomes, there was no evidence of a benefit of intensive consolidation being confined to specific cytogenetic or gene mutation sub-groups. Conclusion: We conclude that in adult patients in complete remission after intensive induction chemotherapy an increased dose of idarubicin delivered during consolidation therapy results in improved LFS, without increased non-hematologic toxicity. Figure 1. Figure 1. Disclosures Szer: Ra Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Alexion Pharmaceuticals, Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees; Alnylam: Honoraria, Membership on an entity's Board of Directors or advisory committees. Marlton:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees. Wei:Novartis: Consultancy, Honoraria, Research Funding; Roche: Consultancy, Honoraria; CTI: Consultancy, Honoraria; Abbvie: Honoraria, Research Funding; Servier: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding. Cartwright:ROCHE: Consultancy, Membership on an entity's Board of Directors or advisory committees. Roberts:Servier: Research Funding; Janssen: Research Funding; Genentech: Research Funding; AbbVie: Research Funding. Mills:Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Meeting attendance sponsorship. Gill:Janssen: Membership on an entity's Board of Directors or advisory committees. Seymour:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genentech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Research Funding, Speakers Bureau; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 6-6
Author(s):  
Mindy Hsiao ◽  
Preet M. Chaudhary ◽  
George Yaghmour

Background: The use of post-transplant cyclophosphamide (PTCy)/tacrolimus/mycophenolate mofetil (MMF) for GVHD prophylaxis has improved outcomes in haploidentical hematopoietic cell transplantation (haplo-HCT). PTCy is now being evaluated in matched-related (MRD) and matched-unrelated (MUD) allo-HCT. Previous studies demonstrated improved GVHD-free/relapse-free survival (GRFS) when PTCy was combined with two immunosuppressive agents and PTCy has also been associated with better relapse-free survival (RFS) as demonstrated in De Jong et al 2019, though only one immunosuppressive agent was used. Currently, there is limited published data comparing outcomes using PTCy/tacrolimus/MMF to standard MRD/MUD GVHD prophylaxis of methotrexate (MTX)/tacrolimus. The importance of studying this comparison may help to improve GVHD outcomes in MRD and MUD allo-HCT. Methods: We retrospectively analyzed adult patients at USC Norris Cancer Hospital (age ≥ 19) who received allo-HCT from 2018 to 2020. The primary end-points assessed were incidence and severity of 1-year aGVHD and cGVHD. Secondary end-points included day+100 mortality, 1-year overall survival (OS), 1-year RFS, 1-year transplant-related mortality (TRM), and 1-year GRFS, defined as grade 3-4 acute GVHD, systemic therapy-requiring chronic GVHD, relapse, or death in the 1-year post-HCT period. Results: A total of 65 adult MRD and MUD allo-HCT recipients and 53 haplo-HCT patients were reviewed. Of the MRD/MUD patients evaluated, approximately 51% (n = 33) were female and 49% (n = 32) were male. The age range was 20-69 years old (median = 46), and the most common diseases included ALL (46%), AML (31%), MDS (11%), and others (i.e. lymphoma, aplastic anemia (AA), myelofibrosis) (12%). 34% (n = 22) of patients received PTCy on D+3 and D+4 with tacrolimus/MMF/ on D+5 as GVHD prophylaxis and 66% (n = 43) of patients received MTX/tacrolimus on D+1, +3, +6, and +11 as GVHD prophylaxis. All haplo-HCT patients received standard PTCy/tacrolimus/MMF. Stem cell source was primarily PBSC except in HLH and AA patients. The PTCy group had more MUD allo-HCT (64%), degree of antigen mismatch (56%), and median age of 50.5 years compared with the MTX group at 44%, 47%, and 44 years respectively. 70% in the MTX group received MAC compared with 45% in the PTCy group. The haplo group had similar demographics to the MTX group. The mean CD34 cell doses in the PTCy, MTX, and haplo groups were 4.87, 5.36, and 7.24x106 cells/kg respectively. Incidences of total GVHD, aGVHD, and aGVHD grade 3 or 4 in the PTCy group were 55%, 50%, and 4.5% respectively compared with 65%, 35%, and 7% in the MTX group, though not significant. The haplo group had 68%, 55%, and 1.9% respectively. Incidence of total cGVHD and cGVHD requiring systemic therapy in the PTCy group was 4.5% and 0% respectively compared with 30% (p = .02) and 23% (p =.01). The haplo group had 13% and 1.9% respectively. Day+100 mortality, 1-year OS, 1-year RFS, 1-year TRM, and 1-year GRFS in the PTCy group were 0%, 80%, 60%, 0%, and 64% respectively compared with 7%, 88%, 90%, 7.3%, and 59%. The haplo group had 3.8%, 86%, 89%, 14%, and 66%. In a univariate analysis, factors significantly associated with GVHD were disease status (p = .0.12) and CD34 dose (p = 0.015) and antigen mismatch (p = 0.04) was associated with increased mortality. Discussion: Our results demonstrate improved overall and extensive cGVHD outcomes in the PTCy group and thus an improvement in 1-year GRFS. Furthermore, incidence and severity of 1-year cGVHD in this group are improved when compared with previously reported outcomes. 1-year GRFS reported in De Jong et al 2019 was 45% and 1-year GRFS reported for all groups in our study is higher at 66%, 64%, and 59% for the haplo, PTCy, and MTX groups respectively. Although this was not significant, it may be clinically meaningful given the significant improvement in extensive GVHD and improvement in all other secondary end-points except 1-year OS and RFS. Furthermore, the PTCy group had a higher percentage of mismatched antigens yet demonstrated superior outcomes. 1-year OS and RFS were superior in the MTX group however this is likely due to sample size differences. The improved extensive cGVHD and GRFS outcomes observed using PTCy/tacrolimus/MMF in the MRD/MUD setting should continue to be evaluated and currently there is an ongoing prospective, randomized study to further investigate. Disclosures Yaghmour: Jazz: Consultancy, Speakers Bureau; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Astellas: Consultancy, Speakers Bureau; Alexion: Consultancy, Speakers Bureau; Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1565-1565 ◽  
Author(s):  
Patrizia Mondello ◽  
Irene Dogliotti ◽  
Jan-Paul Bohn ◽  
Federica Cavallo ◽  
Simone Ferrero ◽  
...  

Purpose: Hodgkin's lymphoma (HL) is a highly curable disease even in advanced-stage, with &gt;90% of long-term survivors. Currently, the standard of care is ABVD (doxorubicin, etoposide, vinblastine and dacarbazine), as it is less toxic and as effective as other more intensive chemotherapy regimens. Alternatively, BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine and prednisone) has been proposed as front-line intensified regimen with a better initial disease control and prolonged time to relapse when compared to ABVD. However, this advantage is associated with higher rates of severe hematologic toxicity, treatment-related deaths, secondary neoplasms and infertility. To date, the debate regarding which regimen should be preferred as first line for advanced-stage HL is still ongoing. To shed some light on this open question we compared efficacy and safety of both regimens in clinical practice. Patients and Methods: From October 2009 to October 2018, patients with HL stage III-IV treated with either ABVD or BEACOPP escalated (BEACOPPesc) were retrospectively assessed in 7 European cancer centers. Results: A total of 372 consecutive patients were included in the study. One-hundred and ten patients were treated with BEACOPPesc and 262 with ABVD. The baseline characteristics of the two groups did not differ significantly, except for a higher rate of high-risk patients in the BEACOPPesc group in contrast to the ABVD one (47% vs 18%; p= 0.003). Complete response rate (CR) assessed by PET imaging at the end of the second cycle was 67% and 78% for the ABVD and BEACOPPesc group (p= 0.003), respectively. Thirteen patients of the ABVD group achieved stable disease (SD) and 6 had a progression disease (PD). On the other hand, 4 of the patients in the BEACOPPesc group progressed, another 2 interrupted therapy because life-threatening toxicity. At the end of the therapy, CR was 76% in the ABVD group and 85% in the BEACOPPesc group (p= 0.01). A total of 20% patients in the ABVD group and 14% patients in the BEACOPPesc group received consolidation radiotherapy on the mediastinal mass at the dose of 30Gy. After radiotherapy, the number of patients with CR increased to 79% and 87% in the two groups (p= 0.041), respectively. Thirty-nine patients (35%) in the BEACOPPesc group required dose reduction of chemotherapy due to toxicity compared to 12 patients (5%; p= &lt;0.001) in the ABVD group. Overall, the rate of severe toxicities was higher in the BEACOPPesc group in comparison with the ABVD cohort. In particular, there was a significant increased frequency of acute grade 3-4 hematologic adverse events (neutropenia 61% vs 24%; anemia 29% vs 4%; thrombocytopenia 29% vs 3%), febrile neutropenia (29% vs 3%), severe infections (18% vs 3%). Myeloid growth factors were administered to 85% and 59% of patients in the BEACOPPesc group compared to the ABVD group. Blood transfusions were required in 51% and 6% of patients in the BEACOPPesc group compared to the ABVD cohort. Progression during or shortly after treatment occurred in 5 patients in the BEACOPPesc group (4%) and in 16 patients in the ABVD group (6%; p= 0.62). Among the 96 patients who achieved a CR after BEACOPPesc and radiotherapy, 8 relapsed (8%), compared to 29 of 208 patients in the ABVD group (14%; p= 0.04). At a median follow-up period of 5 years, no statistical difference in progression free survival (PFS; p=0.11) and event-free survival (EFS; p=0.22) was observed between the BEACOPPesc and ABVD cohorts. Similarly, overall survival (OS) did not differ between the two groups (p=0.14). The baseline international prognostic score (IPS &lt;3 vs ≥ 3) significantly influenced the EFS with an advantage for the high-risk group treated with BEACOPPesc (Figure 1A; p=0.03), but not the PFS (Figure 1B; p=0.06) and OS (Figure 1C; p=0.14). During the follow-up period, in the BEACOPPesc group one patient developed myelodysplasia and one acute leukemia. Second solid tumors developed in one patient in the ABVD group (lung cancer) and one in BEACOPPesc group (breast cancer). Conclusion: We confirm that the ABVD regimen is an effective and less toxic therapeutic option for advanced-stage HL. Although BEACOPP results in better initial tumor control especially in high-risk patients, the long-term outcome remains similar between the two regimens. Disclosures Ferrero: EUSA Pharma: Membership on an entity's Board of Directors or advisory committees; Servier: Speakers Bureau; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Gilead: Speakers Bureau. Martinelli:BMS: Consultancy; Pfizer: Consultancy; ARIAD: Consultancy; Roche: Consultancy; Novartis: Consultancy. Willenbacher:European Commission: Research Funding; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Myelom- und Lymphomselbsthilfe Österreich: Consultancy, Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead Science: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; IQVIA: Membership on an entity's Board of Directors or advisory committees; Merck: Consultancy, Membership on an entity's Board of Directors or advisory committees; oncotyrol: Employment, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Fujimoto: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Tirol Program: Research Funding; Abbvie: Consultancy, Honoraria; Sandoz: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 27-28
Author(s):  
Larry W Kwak ◽  
Juan Manuel Sancho ◽  
Seok-Goo Cho ◽  
Hideyuki Nakazawa ◽  
Junji Suzumiya ◽  
...  

We assessed long-term safety and efficacy of CT-P10 and rituximab in patients with newly diagnosed low-tumour-burden follicular lymphoma (LTBFL), and following a single transition from rituximab to CT-P10. This double-blind, parallel-group, active-controlled phase 3 trial randomized patients with CD20+ LTBFL to receive CT-P10 or US-sourced rituximab (375 mg/m2 intravenous). Induction therapy (weekly for 4 cycles) was followed by a 2-year maintenance period for patients achieving disease control (CR, CRu, PR and SD). During the maintenance, CT-P10 or rituximab were administered every 8 weeks (6 cycles) in the first year and additional CT-P10 was administered every 8 weeks (6 cycles) in the second year. Secondary endpoints (reported here) were overall response rate during the study period, progression-free survival, time-to-progression, and overall survival. Safety and immunogenicity were also evaluated over the study period. Between Nov 9, 2015 and Jan 4, 2018, 258 patients were randomised (130 CT-P10; 128 rituximab). Over the study period, 115 (88%; CT-P10) and 111 (87%; rituximab) patients achieved overall response. At a median follow-up of 29·2 months (IQR: 26·1-33·7), median progression-free survival, time-to-progression, and overall survival were not estimable. The KM estimates (95% CI) for OS at 36 months were 98% (93-99) and 97% (89-99) in the CT-P10 and rituximab groups, respectively. Corresponding values for PFS were 80% (70-87) and 68% (54-79), while results for TTP were 82% (72-88) and 68% (54-79) in the CT-P10 and rituximab groups, respectively. (Figure A. OS; Figure B. PFS and Figure C. TTP) Over the study period, 114 (88%) and 104 (81%) patients in the CT-P10 and rituximab groups, respectively, experienced at least one treatment-emergent adverse event (TEAE) and 14 (11%) patients in each group experienced TE-serious adverse events (TESAEs). There were no unexpected safety findings observed during the second year of the maintenance period after single transition from rituximab to CT-P10. Figure 1 Disclosures Kwak: Celltrion Healthcare: Membership on an entity's Board of Directors or advisory committees; Xeme Biopharma/Theratest: Other: equity; CJ Healthcare: Consultancy; Sellas Life Sciences Grp: Consultancy; Enzychem Life Sciences: Membership on an entity's Board of Directors or advisory committees; Antigenics: Other: equity; InnoLifes, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pepromene Bio: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celltrion, Inc.: Consultancy. Sancho:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria; Gelgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees. Kim:Alexion Pharmaceuticals Inc.: Honoraria, Research Funding. Menne:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Kite/Gilead: Honoraria, Speakers Bureau; Novartis: Honoraria, Other: Travel costs, Speakers Bureau; Pfizer: Honoraria, Other: Travel costs, Speakers Bureau; Celgene: Honoraria, Other: Travel grants; Roche: Speakers Bureau; Janssen: Honoraria, Research Funding, Speakers Bureau; Astra Zeneca: Research Funding; Takeda: Honoraria, Speakers Bureau. Jurczak:Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland: Current Employment; Jagiellonian University, Krakow, Poland: Ended employment in the past 24 months; Acerta: Research Funding; Bayer: Research Funding; Janssen: Research Funding; MeiPharma: Research Funding; Pharmacyclics: Research Funding; Roche: Research Funding; Takeda: Research Funding; TG Therapeutics: Research Funding. Trneny:Gilead: Consultancy, Honoraria, Other: Travel Expenses; Janssen: Consultancy, Honoraria, Other: Travel Expenses; Roche: Consultancy, Honoraria, Other: Travel Expenses; MorphoSys: Consultancy, Honoraria; Celgene: Consultancy; Incyte: Consultancy, Honoraria; Takeda: Consultancy, Honoraria, Other: Travel Expenses; Bristol-Myers Squibb Company: Consultancy, Honoraria, Other: Travel Expenses; Amgen: Honoraria; Abbvie: Consultancy, Honoraria, Other: Travel Expenses. Ogura:Cellgene: Honoraria; Chugai: Honoraria; Denovo Biopharma: Membership on an entity's Board of Directors or advisory committees; MejiSeika Pharma: Membership on an entity's Board of Directors or advisory committees; Mundi Pharma: Membership on an entity's Board of Directors or advisory committees; SymBio: Membership on an entity's Board of Directors or advisory committees; TevaTakeda: Membership on an entity's Board of Directors or advisory committees; Verastem: Membership on an entity's Board of Directors or advisory committees; Daiichi Sankyo: Membership on an entity's Board of Directors or advisory committees; Celltrion, Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees; Eisai: Membership on an entity's Board of Directors or advisory committees. Kim:Pfizer: Research Funding; Donga: Research Funding; Mundipharma: Research Funding; F. Hoffmann-La Roche: Research Funding; Kyowa Kirn: Research Funding; Celltrion: Research Funding; JJ: Research Funding. Lee:Celltrion, Inc.: Current Employment. Kim:Celltrion, Inc.: Current Employment. Ahn:Celltrion, Inc.: Current Employment. Buske:Roche, Janssen, Bayer, MSD: Research Funding; Morphosys: Membership on an entity's Board of Directors or advisory committees; Roche, Janssen, AbbVie, Pfizer, Celltrion: Honoraria, Speakers Bureau. OffLabel Disclosure: Rituximab monotherapy to LTBFL patients


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1125-1125 ◽  
Author(s):  
Michael P Osborn ◽  
Susan Branford ◽  
Deborah L White ◽  
John F Seymour ◽  
Ruth Columbus ◽  
...  

Abstract Abstract 1125 Poster Board I-147 The Australasian Leukaemia and Lymphoma Group conducted a trial (TIDEL I) in 103 patients with newly diagnosed chronic phase CML, using imatinib 600 mg/day with dose escalation to 800 mg/day for suboptimal response. This was defined as failure to achieve (1) complete haematological response (CHR) at 3 months, (2) major cytogenetic response (MCR) at 6 months, (3) complete cytogenetic response (CCR) or molecular equivalent at 9 months, or (4) less than 0.01% (IS) BCR-ABL by RQ-PCR at 12 months. Here we report the outcomes with all surviving patients having been treated for at least 60 months. We aimed to determine whether the patient outcome at 60 months was predicted by the molecular response within the first 18 months of imatinib therapy. The outcomes for patients maintaining a dose of imatinib of ≥600 mg/day in the first 12 months was compared to those who were on a reduced dose for at least part of this time. Event-free survival (EFS) was defined as death from any cause, accelerated phase/blast crisis (AP/BC), and loss of CHR, MCR or CCR. The 103 patients included 66 males and 37 females with a median (±SD) age of 49 (±14) years. All patients had an ECOG performance status of 0-2 at enrolment. The 5-year EFS was 71%, transformation (AP/BC) free survival (TFS) was 95%, and overall survival was 87%. Of the 14 patients who died, 3 died in blast crisis, 2 from transplant-related complications, 8 from CML-unrelated causes, and the cause of death of 1 patient was unavailable. The annual rates of progression to AP/BC over 5 years were 3%, 1%, 0%, 1%, and 0%, while annual event rates were 13%, 8%, 8%, 1%, and 4%. CCR was achieved by 89% of patients by 60 months, while 72% achieved a major molecular response (MMR) by this time. In the first 12 months of treatment, 55% of patients maintained an imatinib dose of ≥600 mg/day (mean ±SD dose = 604 ±10 mg/day), while 45% were on <600 mg/day for at least part of this time (mean ±SD dose = 511 ±100 mg/day). EFS at 60 months was significantly higher in patients taking ≥600 mg/day compared with those who had been dose-reduced to <600 mg/day (89% vs 56%, P<0.001). Annual event rates for the ≥600 mg/day group were 6%, 2%, 2%, 0%, and 2%, while annual event rates for those on <600 mg/day were 14%, 16%, 16%, 8%, and 4%. By 60 months, 96% of patients who had been on ≥600 mg/day within the first 12 months had achieved CCR, while only 80% of those who had been on <600 mg/day had achieved this milestone (P<0.001). Log rank analysis of the achievement of MMR was also significant (P=0.03). Overall survival and TFS after 12 months were both similar between the dosing groups. There was no difference between the dosing groups' median age (50 vs 48 years, P=0.36) or Sokal score (1.04 vs 0.94, P=0.33) that may otherwise account for these results. The outcome was also determined for all patients dependent on the BCR-ABL levels at various assessment timepoints. Patients with a BCR-ABL level of <10% (IS) at 6 months (n=92) had an EFS of 78% at 60 months, while all of those with a level >10% (IS) (n=8) had an event (P<0.001). Patients with a level of ≤1% (IS) at 12 months (equivalent to CCR) (n=81) had an EFS of 75% compared with 25% (n=13) for those with levels >1% (IS) (P<0.001). At 18 months, a level ≤0.1% (IS) (n=58) conferred an EFS of 88%, while those who had failed to attain this depth of response (n=30) had an EFS of 60%. There was a significant difference in EFS between those who had achieved an MMR at 18 months and those who had achieved a CCR, but no MMR (88% vs 67%, P=0.03). In conclusion, our data suggest that patients maintaining a dose of ≥600mg in the first 12 months of imatinib therapy are more likely to achieve CCR and MMR, and superior EFS compared to those with a lower dose. This study also confirms that achieving an MMR by 18 months is associated with improved EFS. This emphasises the value of achieving a molecular response early in the treatment course, as well as adding weight to the evidence supporting the role of molecular monitoring in CML. Disclosures Branford: Novartis Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding. White:Novartis and Britol-Myers Squibb: Research Funding. Seymour:Bayer Schering: Consultancy, Membership on an entity's Board of Directors or advisory committees, Travel grants; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Travel Grants. Catalano:Roche: Honoraria, Research Funding, Travel grants. Mills:Celgene Pty Ltd: Honoraria, Membership on an entity's Board of Directors or advisory committees. Hughes:Bristol-Myers Squibb: Advisor, Honoraria, Research Funding; Novartis: Advisor, Honoraria, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2406-2406
Author(s):  
Neil E. Kay ◽  
Jeanette Eckel Passow ◽  
Esteban Braggio ◽  
Scott Van Wier ◽  
Tait Shanafelt ◽  
...  

Abstract Abstract 2406 The outcome for a given CLL patient is difficult to predict. While there are promising models, they require collation of multiple clinical and laboratory parameters, and it remains to be seen whether they will apply to typical CLL patients in the community. To further dissect out explanations for this dramatic clinical heterogeneity, we sought to understand genomic complexity of clonal B-cells as a possible explanation of clinical variability with specific application to genomic complexity as a predictor of therapeutic response and clinical outcome in CLL. Thus we wished to identified global gains and losses of genetic material in order to define copy-number abnormalities (CNA) in 48 clinically progressive CLL patients who were about to be treated on a chemoimmunotherapy protocol. This protocol was previously reported by us (Blood. 109:2007) and had an induction phase with pentostatin (2 mg/m2), cyclophosphamide (600 mg/m2) and rituximab (375 mg/m2) given every 3 weeks for 6 cycles and then responding patients were followed ever three months until relapse. In order to estimate CNA, we employed array-based comparative genomic hybridization (aCGH) using a one-million oligonucleotide probe array format on the leukemic B-cells from the 48 patients entering this trial. In those same patients, the aCGH data were compared to a) FISH detecxtable data using a panel for the common recurring genetic defects seen in CLL and b) to their clinical outcome on this trial. With aCGH we found that 288 CNA were identified (median of 4 per patient; range 0–32) of which 215 were deletions and 73 were gains. The aCGH method identified most of the FISH detected abnormalities with a complete concordance for 17p13.1- deletion (17p-) between aCGH and FISH. We also identified chromosomal gain or loss in ≥6% of the patients on chromosomes 3, 8, 9, 10, 11, 12, 13, 14 and 17. We found that CLL patients with ≥15 CNA had a significantly worse progression free survival (PFS) than patients with <15 CNA (p=0.004)(figure). Patients with ≥15 CNA also had a shorter duration of response than those with <15 CNA (p=0.0726). Of interest, more complex genomic features were found both in patients with a 17p13.1 deletion and in more favorable genetic subtypes such as 13q14.1. Thus, for 5 patients with >15 CNAs the following FISH patterns were seen: +12/13q14.1-x1/13q14.1 -x2, 13q14.1 ×1 (n=2), and 17p13.1 (n=2). In addition, a 17p- by FISH was positively associated with the number of CNA and total deletion size. The odds of having an overall response decreased by 28% (95% CI: 5–55%; p=0.015) with each additional CNA for the 17p13.1- patients. In addition to defining genomic complexity as the total number of CNA for each patient, we also defined complexity as the sum of the lengths of all interstitial chromosomal gains and losses. When defined as the total size of chromosomal gains or losses, genomic complexity was significantly associated with 17p13.1 and worse overall clinical response. In summary, this analysis utilized the global assessment of copy number abnormalities using a high-resolution aCGH platform for clinically progressive CLL patients prior to initiation of their treatment. One outcome was that we found higher genomic complexity was associated with shorter progression-free survival, reduced duration of response and predicted a poor response to treatment. In addition since we did find genomic complexity in more traditionally favorable FISH categories, such as 13q14.1 type defects, this may explain why some of the latter patients do not fare as well as might be expected even with aggressive chemoimmunotherapy approaches. This study adds information on the association between inferior trial response and increasing genetic complexity as CLL progresses. Disclosures: Off Label Use: Pentostatin. Kipps: GlaxoSmithKline: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Genzyme: Research Funding; Memgen: Research Funding; Igenica: Consultancy, Membership on an entity's Board of Directors or advisory committees; Sanofi Aventis: Research Funding; Abbott Laboratories: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 207-207 ◽  
Author(s):  
Timothy P. Hughes ◽  
Andreas Hochhaus ◽  
Giuseppe Saglio ◽  
Dong-Wook Kim ◽  
Saengsuree Jootar ◽  
...  

Abstract Abstract 207 Background: Results from the phase 3, international, randomized ENESTnd trial have demonstrated the superior efficacy of nilotinib over imatinib with significantly higher rates of major molecular response (MMR), complete cytogenetic response (CCyR), and with significantly lower rates of progression to AP/BC on treatment. Here, we present data with a median follow-up of 18 months. Methods: 846 CML-CP patients were randomized to nilotinib 300 mg twice daily (bid) (n=282), nilotinib 400 mg bid (n=281), and imatinib 400 mg once daily (n=283). Primary endpoint was MMR (≤ 0.1% BCR-ABLIS) rate “at” 12 months, as previously presented. Key secondary endpoint was durable MMR at 24 months. Other endpoints assessed at 24 months include progression to AP/BC (with and without clonal evolution), event-free survival, progression-free survival, and overall survival (OS). Results: With a median follow-up of 18 months, the overall best MMR rate was superior for nilotinib 300 mg bid (66%, P < .0001) and nilotinib 400 mg bid (62%, P < .0001) compared with imatinib (40%). Superior rates of MMR were observed in both nilotinib arms compared with the imatinib arm across all Sokal risk groups (Table). The overall best rate of BCR-ABLIS ≤ 0.0032% (equivalent to complete molecular response, CMR) was superior for nilotinib 300 mg bid (21%, P < .0001) and nilotinib 400 mg bid (17%, P < .0001) compared with imatinib (6%). The overall best CCyR rate was superior for nilotinib 300 mg bid (85%, P < .001) and nilotinib 400 mg bid (82%, P=.017) compared with imatinib (74%). The superior efficacy of nilotinib was further demonstrated using the 2009 European LeukemiaNet (ELN) 12-month milestone in which fewer patients had suboptimal response or treatment failure on nilotinib 300 mg bid (2%, 3%) and nilotinib 400 mg bid (2%, 2%) vs imatinib (11%, 8%). Rates of progression to AP/BC on treatment were significantly lower for nilotinib 300 mg bid (0.7%, P=.006) and nilotinib 400 mg bid (0.4%, P=.003) compared with imatinib (4.2%). The rate of progression on treatment was also significantly lower for nilotinib when including clonal evolution as a criteria for progression (Table). There were fewer CML-related deaths on nilotinib 300 mg bid (n=2), and 400 mg bid (n=1) vs imatinib (n=8). Estimated OS rate (including data from follow-up after discontinuation) at 18 months was higher for nilotinib 300 mg bid (98.5%, P=.28) and nilotinib 400 mg bid (99.3%, P=.03) vs imatinib (96.9%). Both drugs were well-tolerated. Discontinuations due to adverse events or laboratory abnormalities were lowest for nilotinib 300 mg bid (7%) compared with nilotinib 400 mg bid (12%) and imatinib (9%). With longer follow up there has been minimal change in the occurrence of AEs. Minimum 24-month follow-up data for all patients will be presented. Conclusions: With longer follow-up, nilotinib was associated with a significantly lower rate of progression to AP/BC on treatment and lower rates of suboptimal response or treatment failure vs imatinib. Nilotinib resulted in fewer CML-related deaths and a higher OS rate vs imatinib. Nilotinib induced superior rates of MMR, CMR, and CCyR vs imatinib in patients with newly diagnosed CML-CP. Taken together, these data support nilotinib as a new standard of care for patients with newly diagnosed CML. Disclosures: Hughes: Novartis: Honoraria, Research Funding, Speakers Bureau; Bristol-Meyers Squibb: Honoraria, Research Funding; Ariad: Honoraria. Hochhaus:Bristol Myers Squibb: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Saglio:Novartis: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria. Kim:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. le Coutre:Novartis: Research Funding, Speakers Bureau; Bristol-Myers Squibb: Speakers Bureau. Reiffers:Novartis: Research Funding. Pasquini:Novartis: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria. Clark:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genzyme: Honoraria, Research Funding. Gallagher:Novartis Pharma AG: Employment, Equity Ownership. Hoenekopp:Novartis Pharma AG: Employment. Haque:Novartis: Employment. Larson:Novartis: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding. Kantarjian:Novartis: Consultancy, Research Funding; Bristol Myers Squibb: Research Funding; Pfizer: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document