scholarly journals Convergent mutations in tissue-specific regulatory regions reveal novel cancer drivers

2020 ◽  
Author(s):  
Nasa Sinnott-Armstrong ◽  
Jose A. Seoane ◽  
Richard Sallari ◽  
Jonathan K. Pritchard ◽  
Christina Curtis ◽  
...  

AbstractAlthough much effort has been devoted to identifying coding mutations across cancer types, regulatory mutations remain poorly characterized. Here, we describe a framework to identify non-coding drivers by aggregating mutations in cell-type specific regulatory regions for each gene. Application of this approach to 2,634 patients across 11 human cancer types identified 60 pan-cancer, 22 pan-breast and 192 cancer specific candidate driver genes that were enriched for expression changes. Analysis of high-throughput CRISPR knockout screens revealed large, cancer specific growth effects for these genes, on par with coding mutations and exceeding that for promoter mutations. Amongst the five candidate drivers selected for further analysis, four (IPO9, MED8, PLEKHA6, and OXNAD1) were associated with survival across multiple cancer types. These studies demonstrate the power of our cell-type aware, convergent regulatory framework to define novel tissue specific cancer driver genes, considerably expanding evidence of functional non-coding mutations in cancer.

2019 ◽  
Author(s):  
Pramod Chandrashekar ◽  
Navid Ahmadinejad ◽  
Junwen Wang ◽  
Aleksandar Sekulic ◽  
Jan B. Egan ◽  
...  

ABSTRACTFunctions of cancer driver genes depend on cellular contexts that vary substantially across tissues and organs. Distinguishing oncogenes (OGs) and tumor suppressor genes (TSGs) for each cancer type is critical to identifying clinically actionable targets. However, current resources for context-aware classifications of cancer drivers are limited. In this study, we show that the direction and magnitude of somatic selection of missense and truncating mutations of a gene are suggestive of its contextual activities. By integrating these features with ratiometric and conservation measures, we developed a computational method to categorize OGs and TSGs using exome sequencing data. This new method, named genes under selection in tumors (GUST) shows an overall accuracy of 0.94 when tested on manually curated benchmarks. Application of GUST to 10,172 tumor exomes of 33 cancer types identified 98 OGs and 179 TSGs, >70% of which promote tumorigenesis in only one cancer type. In broad-spectrum drivers shared across multiple cancer types, we found heterogeneous mutational hotspots modifying distinct functional domains, implicating the synchrony of convergent and divergent disease mechanisms. We further discovered two novel OGs and 28 novel TSGs with high confidence. The GUST program is available at https://github.com/liliulab/gust. A database with pre-computed classifications is available at https://liliulab.shinyapps.io/gust


2019 ◽  
Author(s):  
Rafsan Ahmed ◽  
Ilyes Baali ◽  
Cesim Erten ◽  
Evis Hoxha ◽  
Hilal Kazan

AbstractMotivationGenomic analyses from large cancer cohorts have revealed the mutational heterogeneity problem which hinders the identification of driver genes based only on mutation profiles. One way to tackle this problem is to incorporate the fact that genes act together in functional modules. The connectivity knowledge present in existing protein-protein interaction networks together with mutation frequencies of genes and the mutual exclusivity of cancer mutations can be utilized to increase the accuracy of identifying cancer driver modules.ResultsWe present a novel edge-weighted random walk-based approach that incorporates connectivity information in the form of protein-protein interactions, mutual exclusion, and coverage to identify cancer driver modules. MEXCOWalk outperforms several state-of-the-art computational methods on TCGA pan-cancer data in terms of recovering known cancer genes, providing modules that are capable of classifying normal and tumor samples, and that are enriched for mutations in specific cancer types. Furthermore, the risk scores determined with output modules can stratify patients into low-risk and high-risk groups in multiple cancer types. MEXCOwalk identifies modules containing both well-known cancer genes and putative cancer genes that are rarely mutated in the pan-cancer data. The data, the source code, and useful scripts are available at:https://github.com/abu-compbio/[email protected]


2022 ◽  
Author(s):  
Malvika Sudhakar ◽  
Raghunathan Rengaswamy ◽  
Karthik Raman

The progression of tumorigenesis starts with a few mutational and structural driver events in the cell. Various cohort-based computational tools exist to identify driver genes but require a large number of samples to produce reliable results. Many studies use different methods to identify driver mutations/genes from mutations that have no impact on tumour progression; however, a small fraction of patients show no mutational events in any known driver genes. Current unsupervised methods map somatic and expression data onto a network to identify the perturbation in the network. Our method is the first machine learning model to classify genes as tumour suppressor gene (TSG), oncogene (OG) or neutral, thus assigning the functional impact of the gene in the patient. In this study, we develop a multi-omic approach, PIVOT (Personalised Identification of driVer OGs and TSGs), to train on experimentally or computationally validated mutational and structural driver events. Given the lack of any gold standards for the identification of personalised driver genes, we label the data using four strategies and, based on classification metrics, show gene-based labelling strategies perform best. We build different models using SNV, RNA, and multi-omic features to be used based on the data available. Our models trained on multi-omic data improved predictions compared to mutation and expression data, achieving an accuracy >0.99 for BRCA, LUAD and COAD datasets. We show network and expression-based features contribute the most to PIVOT. Our predictions on BRCA, COAD and LUAD cancer types reveal commonly altered genes such as TP53, and PIK3CA, which are predicted drivers for multiple cancer types. Along with known driver genes, our models also identify new driver genes such as PRKCA, SOX9 and PSMD4. Our multi-omic model labels both CNV and mutations with a more considerable contribution by CNV alterations. While predicting labels for genes mutated in multiple samples, we also label rare driver events occurring in as few as one sample. We also identify genes with dual roles within the same cancer type. Overall, PIVOT labels personalised driver genes as TSGs and OGs and also identifies rare driver genes. PIVOT is available at https://github.com/RamanLab/PIVOT.


2017 ◽  
pp. 1-15 ◽  
Author(s):  
Russell Bonneville ◽  
Melanie A. Krook ◽  
Esko A. Kautto ◽  
Jharna Miya ◽  
Michele R. Wing ◽  
...  

Purpose Microsatellite instability (MSI) is a pattern of hypermutation that occurs at genomic microsatellites and is caused by defects in the mismatch repair system. Mismatch repair deficiency that leads to MSI has been well described in several types of human cancer, most frequently in colorectal, endometrial, and gastric adenocarcinomas. MSI is known to be both predictive and prognostic, especially in colorectal cancer; however, current clinical guidelines only recommend MSI testing for colorectal and endometrial cancers. Therefore, less is known about the prevalence and extent of MSI among other types of cancer. Methods Using our recently published MSI-calling software, MANTIS, we analyzed whole-exome data from 11,139 tumor-normal pairs from The Cancer Genome Atlas and Therapeutically Applicable Research to Generate Effective Treatments projects and external data sources across 39 cancer types. Within a subset of these cancer types, we assessed mutation burden, mutational signatures, and somatic variants associated with MSI. Results We identified MSI in 3.8% of all cancers assessed—present in 27 of tumor types—most notably adrenocortical carcinoma (ACC), cervical cancer (CESC), and mesothelioma, in which MSI has not yet been well described. In addition, MSI-high ACC and CESC tumors were observed to have a higher average mutational burden than microsatellite-stable ACC and CESC tumors. Conclusion We provide evidence of as-yet-unappreciated MSI in several types of cancer. These findings support an expanded role for clinical MSI testing across multiple cancer types as patients with MSI-positive tumors are predicted to benefit from novel immunotherapies in clinical trials.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1289-D1301 ◽  
Author(s):  
Tao Wang ◽  
Shasha Ruan ◽  
Xiaolu Zhao ◽  
Xiaohui Shi ◽  
Huajing Teng ◽  
...  

Abstract The prevalence of neutral mutations in cancer cell population impedes the distinguishing of cancer-causing driver mutations from passenger mutations. To systematically prioritize the oncogenic ability of somatic mutations and cancer genes, we constructed a useful platform, OncoVar (https://oncovar.org/), which employed published bioinformatics algorithms and incorporated known driver events to identify driver mutations and driver genes. We identified 20 162 cancer driver mutations, 814 driver genes and 2360 pathogenic pathways with high-confidence by reanalyzing 10 769 exomes from 33 cancer types in The Cancer Genome Atlas (TCGA) and 1942 genomes from 18 cancer types in International Cancer Genome Consortium (ICGC). OncoVar provides four points of view, ‘Mutation’, ‘Gene’, ‘Pathway’ and ‘Cancer’, to help researchers to visualize the relationships between cancers and driver variants. Importantly, identification of actionable driver alterations provides promising druggable targets and repurposing opportunities of combinational therapies. OncoVar provides a user-friendly interface for browsing, searching and downloading somatic driver mutations, driver genes and pathogenic pathways in various cancer types. This platform will facilitate the identification of cancer drivers across individual cancer cohorts and helps to rank mutations or genes for better decision-making among clinical oncologists, cancer researchers and the broad scientific community interested in cancer precision medicine.


Pancreatology ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. S30
Author(s):  
Paola Martinelli ◽  
Bruno Sainz ◽  
Enrique Carrillo-de Santa Pau ◽  
Lorenzo Rinaldi ◽  
Natalia del Pozo ◽  
...  

2017 ◽  
Author(s):  
Luis Zapata ◽  
Hana Susak ◽  
Oliver Drechsel ◽  
Marc R. Friedländer ◽  
Xavier Estivill ◽  
...  

AbstractTumors are composed of an evolving population of cells subjected to tissue-specific selection, which fuels tumor heterogeneity and ultimately complicates cancer driver gene identification. Here, we integrate cancer cell fraction, population recurrence, and functional impact of somatic mutations as signatures of selection into a Bayesian inference model for driver prediction. In an in-depth benchmark, we demonstrate that our model, cDriver, outperforms competing methods when analyzing solid tumors, hematological malignancies, and pan-cancer datasets. Applying cDriver to exome sequencing data of 21 cancer types from 6,870 individuals revealed 98 unreported tumor type-driver gene connections. These novel connections are highly enriched for chromatin-modifying proteins, hinting at a universal role of chromatin regulation in cancer etiology. Although infrequently mutated as single genes, we show that chromatin modifiers are altered in a large fraction of cancer patients. In summary, we demonstrate that integration of evolutionary signatures is key for identifying mutational driver genes, thereby facilitating the discovery of novel therapeutic targets for cancer treatment.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hanxiao Zhou ◽  
Yue Gao ◽  
Xin Li ◽  
Shipeng Shang ◽  
Peng Wang ◽  
...  

Abstract Background Emerging evidence has revealed that some long intergenic non-coding RNAs (lincRNAs) are likely to form clusters on the same chromosome, and lincRNA genomic clusters might play critical roles in the pathophysiological mechanism. However, the comprehensive investigation of lincRNA clustering is rarely studied, particularly the characterization of their functional significance across different cancer types. Methods In this study, we firstly constructed a computational method basing a sliding window approach for systematically identifying lincRNA genomic clusters. We then dissected these lincRNA genomic clusters to identify common characteristics in cooperative expression, conservation among divergent species, targeted miRNAs, and CNV frequency. Next, we performed comprehensive analyses in differentially-expressed patterns and overall survival outcomes for patients from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) across multiple cancer types. Finally, we explored the underlying mechanisms of lincRNA genomic clusters by functional enrichment analysis, pathway analysis, and drug-target interaction. Results We identified lincRNA genomic clusters according to the algorithm. Clustering lincRNAs tended to be co-expressed, highly conserved, targeted by more miRNAs, and with similar deletion and duplication frequency, suggesting that lincRNA genomic clusters may exert their effects by acting in combination. We further systematically explored conserved and cancer-specific lincRNA genomic clusters, indicating they were involved in some important mechanisms of disease occurrence through diverse approaches. Furthermore, lincRNA genomic clusters can serve as biomarkers with potential clinical significance and involve in specific pathological processes in the development of cancer. Moreover, a lincRNA genomic cluster named Cluster127 in DLK1-DIO3 imprinted locus was discovered, which contained MEG3, MEG8, MEG9, MIR381HG, LINC02285, AL132709.5, and AL132709.1. Further analysis indicated that Cluster127 may have the potential for predicting prognosis in cancer and could play their roles by participating in the regulation of PI3K-AKT signaling pathway. Conclusions Clarification of the lincRNA genomic clusters specific roles in human cancers could be beneficial for understanding the molecular pathogenesis of different cancer types.


Author(s):  
Joo Sang Lee ◽  
Nishanth Ulhas Nair ◽  
Lesley Chapman ◽  
Sanju Sinha ◽  
Kun Wang ◽  
...  

AbstractPrecision oncology has made significant advances in the last few years, mainly by targeting actionable mutations in cancer driver genes. However, the proportion of patients whose tumors can be targeted therapeutically remains limited. Recent studies have begun to explore the benefit of analyzing tumor transcriptomics data to guide patient treatment, raising the need for new approaches for systematically accomplishing that. Here we show that computationally derived genetic interactions can successfully predict patient response. Assembling a broad repertoire of 32 datasets spanning more than 1,500 patients and including both tumor transcriptomics and response data, we predicted the response in 17 out of 21 targeted and 8 out of 11 checkpoint therapy datasets across 8 different cancer types with considerable accuracy, without ever training on these datasets. Analyzing the recently published multi-arm WINTHER trial, we show that the fraction of patients benefitting from transcriptomic-based treatments could potentially be markedly increased from 15% to about 85% by targeting synthetic lethal vulnerabilities in their tumors. In summary, this is the first computational approach to obtain considerable predictive performance across many different targeted and immunotherapy datasets, providing a promising new way for guiding cancer treatment based on the tumor transcriptomics of cancer patients.


Sign in / Sign up

Export Citation Format

Share Document